

PopPUNK documentation

PopPUNK is a tool for clustering genomes. We refer to the clusters as
variable-length-k-mer clusters, or VLKCs. Biologically, these clusters
typically represent distinct strains. We refer to subclusters of strains as lineages.

If you are new to PopPUNK, we’d recommend starting on Installation, then
by reading the Overview.

[image: PopPUNK (Population Partitioning Using Nucleotide K-mers)]
The first version was targeted specifically
as bacterial genomes, but the current version has also been used for viruses
(e.g. enterovirus, influenza, SARS-CoV-2) and eukaryotes (e.g. Candida sp.,
P. falciparum). Under the hood, PopPUNK uses
pp-sketchlib [https://github.com/johnlees/pp-sketchlib] to rapidly calculate
core and accessory distances, and machine learning tools written in python to
use these to cluster genomes. A detailed description of the method can be found
in the paper [https://doi.org/10.1101/gr.241455.118].

Important

Looking for older versions of the documentation? For previous versions with
the old API (--assign-query, --refine-fit etc) see v2.2.0 [https://poppunk.readthedocs.io/en/v2.2.0-docs/].
For older versions which used mash, see v1.2.0 [https://poppunk.readthedocs.io/en/v1.2.2-docs/].

Contents:

	PopPUNK documentation

	Installation

	Overview

	Sketching (--create-db)

	Data quality control (--qc-db)

	Fitting new models (--fit-model)

	Distributing PopPUNK models

	Query assignment (poppunk_assign)

	Creating visualisations

	Minimum spanning trees

	Subclustering with PopPIPE

	Using GPUs

	Troubleshooting

	Scripts

	Iterative PopPUNK

	Citing PopPUNK

	Reference documentation

	Roadmap

	Miscellaneous

Why use PopPUNK?

The advantages of PopPUNK are broadly that:

	It is fast, and scalable to over \(10^{5}\) genomes in a single run.

	Assigning new query sequences to a cluster using an existing database is scalable even beyond this.

	Cluster names remain consistent between studies, and other cluster labels such as MLST
can be appended.

	Databases can be updated online (as sequences arrive).

	Online updating is equivalent to building databases from scratch.

	Databases can be kept small and managable by only keeping representative isolates.

	Databases naturally allow in-depth analysis of single clusters,
but keeping the full context of the whole database.

	There is no bin cluster. Outlier isolates will be in their own cluster.

	Pre-processing, such as generation of an alignment, is not required.

	Raw sequence reads can be used as input, while being filtered for sequencing errors.

	The definition of clusters are biologically relevant.

	Many quantitative and graphical outputs are provided.

	A direct import into microreact [https://microreact.org/] is
available, as well as cytoscape [http://www.cytoscape.org/],
grapetree [http://dx.doi.org/10.1101/gr.232397.117] and
phandango [http://jameshadfield.github.io/phandango/].

	Everything is available within a single python executable.

Citation

If you find PopPUNK useful, please cite as:

Lees JA, Harris SR, Tonkin-Hill G, Gladstone RA, Lo SW, Weiser JN, Corander J, Bentley SD, Croucher NJ. Fast and flexible
bacterial genomic epidemiology with PopPUNK. Genome Research 29:1-13 (2019).
doi:10.1101/gr.241455.118 [https://dx.doi.org/10.1101/gr.241455.118]

See Citing PopPUNK for more details.

Index

	Index

	Search Page

Installation

The easiest way to install is through conda, which will also install the
dependencies:

conda install poppunk

Then run with poppunk.

Important

From v2.1.0 onwards, PopPUNK requires python3.8 to run
(which on many default Linux installations is
run using python3 rather than python).

Important

From v2.1.2 onwards, PopPUNK no longer supports mash. If you want to
use older databases created with mash, please downgrade to <v2

Installing with conda (recommended)

If you do not have conda you can install it through
miniconda [https://conda.io/miniconda.html] and then add the necessary
channels:

conda config --add channels defaults
conda config --add channels bioconda
conda config --add channels conda-forge

Then run:

conda install poppunk

If you want to use GPUs, take a look at Using GPUs.

If you are having conflict issues with conda, our advice would be:

	Remove and reinstall miniconda.

	Never install anything in the base environment

	Create a new environment for PopPUNK with conda create -n pp_env poppunk

If you have an older version of PopPUNK, you can upgrade using this method – you
may also wish to specify the version, for example conda install poppunk==2.3.0 if you
wish to upgrade.

conda-forge also has some helpful tips: https://conda-forge.org/docs/user/tipsandtricks.html

Installing with pip

If you do not have conda, you can also install through pip:

python3 -m pip install poppunk

This may not deal with all necessary dependencies, but we are working on it
and it should again be possible in an upcoming release.

Clone the code

You can also clone the github to run the latest version, which is executed by:

git clone https://github.com/bacpop/PopPUNK.git && cd PopPUNK
python3 setup.py build
python3 setup.py install
python3 poppunk-runner.py

This will also give access to the Scripts.

You will need to install the dependencies yourself (you can still use
conda or pip for this purpose). See environment.yml:

mamba env create -f environment.yml
conda activate pp_env

Overview

This page details the way in which we would advise that you should use and
run PopPUNK, if possible.

[image: Flowchart for choosing how to use PopPUNK]

Use the command line interface

Installation and version

Install via conda if possible. Version 2.5.0 of PopPUNK and version 2.0.0 of pp-sketchlib
are the current minimum supported versions.

Use query assignment mode

If a database is available for your species (see https://www.bacpop.org/poppunk/)
we would strongly recommend downloading it to use to cluster your genomes. This
has many advantages:

	No need to run through the potentially complex model fitting.

	Assured model performance.

	Considerably faster run times.

	Use existing cluster definitions.

	Use the context of large, high quality reference populations to interpret your genomes’ clusters.

See Query assignment (poppunk_assign) for instructions on how to use this mode.

You can think of this as being similar to using an existing MLST/cgMLST/wgMLST scheme
to define your sample’s strains.

Fit your own model

If a database isn’t available for your species, you can fit your own. This consists of three steps:

	Sketch your genomes (see Sketching (--create-db)).

	Quality control your database (see Data quality control (--qc-db)).

	Fit a model (see Fitting new models (--fit-model)).

	Repeat step two, until you have a model which works for your needs.

After getting a good fit, you may want to share it with others so that they can
use it to assign queries. See Distributing PopPUNK models for advice. We would also
be interested to hear from you if you’d like to add your new model to the
pre-fit databases above – please contact poppunk@poppunk.net.

Create visualisations

A number of plots are created by default. You can also
create files for further visualisation in microreact [https://microreact.org/],
cytoscape [http://www.cytoscape.org/],
grapetree [http://dx.doi.org/10.1101/gr.232397.117] and
phandango [http://jameshadfield.github.io/phandango/]. We have found that
looking at the appearance of clusters on a tree is always very helpful, and would
recommend this for any fit.

Older versions of PopPUNK mandated this be chosen as part of the main analysis,
and then with --generate-viz mode. This is now run separately, after the
main analysis, with poppunk_visualise.

See Creating visualisations for details on options.

Use an online interface

If available, you may want to use one of the browser-based interfaces to
PopPUNK. These include beebop [https://beebop.dide.ic.ac.uk/] and
pathogen.watch [https://pathogen.watch/genomes/all?genusId=1301&speciesId=1313]
(S. pneumoniae only).

Using these interfaces requires nothing to be installed or set up, doesn’t require any
genome data to be shared with us, and will return interactive visualisations. If your
species isn’t available, or you have large batches of genomes to cluster you will
likely want to use the command line interface instead.

Sketching (--create-db)

The basis of all analysis is estimation of core and accessory genome distances between samples.
PopPUNK uses genome sketching to make analysis more efficient. In previous versions we used
mash, however the current version now requires pp-sketchlib [https://github.com/johnlees/pp-sketchlib].

This page details options related to sketching and distance calculation, and is relevant
to both Query assignment (poppunk_assign) and Fitting new models (--fit-model).

Overview

Any input given to --r-files or --q-files will be sketched using the following
steps:

	Run pp-sketchlib to sketch all input genomes.

	(r-files only) Run Data quality control (--qc-db) on the sketches. Remove, ignore or stop, depending on --qc-filter.

	(r-files only) Calculate random match chances and add to the database.

	Save sketches in a HDF5 datbase (the .h5 file).

	(r-files only) Calculate core and accessory distances between every pair of sketches, save in .npy and .pkl.

	(q-files only) Calculate core and accessory distances between query and reference sketches.

	Report any core distances greater than --max-a-dist (and quit, if an r-file).

To run this before Fitting new models (--fit-model), use --create-db:

poppunk --create-db --output database --r-files rlist.txt --threads 8

As noted elsewhere, the input is file which lists your sample names and paths to their sequence data. This file
has no header, is tab separated, and contains the sample name in the first column. Subsequent
columns may contain paths to either assembled or raw read data (the type will automatically
be inferred by checking for the presence of quality scores). Data may be gzipped or uncompressed:

MS1 ms1_assembled.fa
MS2 ms2_assembled.fa
SM14 SM14_1.fq.gz SM14_2.fq.gz

The rest of this page describes options to further control this process.

Note

Sketching considers k-mers on both the forward and reverse by default, as typically
reads and assemblies are not aligned to a single strand. For genomes where input is
always on the same (forward) strand, as may be the case with single-stranded
viral genomes, use the --strand-preserved option to ignore the reverse strand
k-mers.

Using pp-sketchlib directly

You can use pp-sketchlib directly to create sketches, though functionality is identical
to doing this through PopPUNK. You will need to run both sketch and query modes to generate
the sketch database and the distance files as in --create-db:

sketchlib sketch -l rfiles.txt -o database -s 10000 -k 15,31,2 --cpus 4
sketchlib query dist database -o dists --cpus 4

You may want to do this if you anticipate trying different k-mer sizes, are using the
databases for other purposes, or running a very large analysis where it is useful to split
up the sketching and distance steps. Useful options include:

	sketchlib query jaccard – will output Jaccard distances at each k-mer length, rather than core and accessory distances.

	--subset – to only calculate distances for a subset of the genomes in the reference database.

Warning

Some options have slightly different names. See the pp-sketchlib README for full details.

Viewing information about a database

Use poppunk_info on a HDF5 file:

> poppunk_info --db e_coli --simple

PopPUNK database: ecoli.h5
Sketch version: 9314bda28ed25a60dd40f9b9e896c0b269500fec
Contains random matches: True
Number of samples: 10287
K-mer sizes: 15,18,21,24,27
Sketch size: 9984

Sketch size is always rounded to the nearest 64.

Warning

The sketch version should match between databases you are comparing, but the program
will still run with a warning if they don’t. Check results carefully.

Without --simple to get further information for every sample (--output
to save results to a file; --network to use a non-default network file):

Sample,Length,Missing_bases,Frequency_A,Frequency_C,Frequency_G,Frequency_T,Component_label,Component_size,Node_degree
11657_5#1,4673808,2879,0.24679,0.257679,0.249401,0.24555,0,258,15
11657_5#10,4702152,4024,0.244373,0.252315,0.252617,0.249008,1,17,5
11657_5#12,5024448,5852,0.247563,0.245727,0.255955,0.24988,2,464,445
11657_5#13,5180468,5010,0.248152,0.251625,0.254893,0.244739,3,784,733
11657_5#14,5329972,13419,0.243371,0.260128,0.251946,0.244246,4,177,128

Choosing the right k-mer lengths

To get a sensitive estimate of accessory distance independent from core
distance, a small a k-mer size as possible needs to be included in the fit.
However, for longer genomes too small a k-mer size will result in biased
estimates of distances as small k-mers will match at random. pp-sketchlib now
includes a correction for random matches, but there is still a lower limit at
which this can work. A simple formula for estimating this is:

\[\begin{split}r &= 1 - (1 - 2 \cdot 4^{-k})^{-l} \\
J_r &= \frac{r^2}{2r - r^2}\end{split}\]

where \(k\) is the k-mer length, \(l\) is the length of the genome and \(J_r\)
is the Jaccard distance expected by chance. When \(J_r\) approaches 1, estimation will
begin to fail.

Note

For genomes on a single strand, the factor of two in the first formula above
should be excluded.

At the other end, choosing a \(k\) which is too long will result in all k-mers
mismatching. The greater the core distance \(\pi\), the lower the allowable maximum.

Some k-mer ranges for --min-k and --max-k we have found to work for various genomes:

k-mer lengths by domain

	Domain/pathogen

	Typical \(l\)

	\(\pi\)

	min-k

	max-k

	Beta-coronaviruses

	20kb

	0.1

	6

	15

	Bacteria

	2-5Mb

	~0.01-0.04

	13

	29

	Fungi

	16Mb

	~0.01

	15

	31

	Plasmodium

	23Mb

	0.0005

	17

	31

A --k-step of four is usually sufficient, but drop this to two or three
to give the best accuracy at the expense of increased execution time.

A good model will have a straight line fit between \(\log(J)\) and \(k\). Run
with the --plot-fit option to randomly choose a number
of sample pairs to plot the relation between k-mer distances and core and
accessory fits. This plot does not have to be perfectly straight, but the general trend
should be followed. If you have a point at the end going off the scale, you will want to adjust
your k-mer range.

[image: A fixed fit to k-mer distances]

Choosing the sketch size

The default sketch size \(s\) is 10000. Note that this is 10-fold greater than the mash
default of 1000 – this is required to get sufficient resolution on \(\pi\). For closely
related genomes with smaller \(\pi\), you may need to increase the sketch size.

As a rule of thumb, choose \(s = \frac{1}{\pi}\) based on the minimum resolution
in \(\pi\) you need to observe.

Important

Any Jaccard distances \(< \frac{5}{s}\) will be
ignored in the fit of core and accessory distances. This prevents spurious
matches between very close sketches dominating, when a poor minimum k-mer length
has been chosen.

Note that a larger sketch size will result in a linear increase in database size
and distance calculation time.

Sketching from read data

You can also use sequence reads rather than assemblies as input. The main differences are that
this data is typically a lot larger, and may contain false k-mers as the result of sequencing
errors.

Read data is automatically detected for each input file. It may be interleaved, or given
as forward and reverse reads. Low frequency k-mers, which are assumed to be the result
of sequencing error, will be filtered out automatically. Use the --min-kmer-count option
to set the minimum number of k-mers needed to be observed to include these. Most error
k-mers will appear only once, but ideally set this somewhere between 1 and the coverage:

[image: Histogram of k-mers from sequence reads]
In this example the coverage is around 150x, so most correct k-mers have a frequency
centred around this point (there is a second peak at twice this value, which are
repeats). There is a large peak at a frequency of one, which are the error k-mers. In this
example any filter between 15-75 would be appropriate.

The default filter is a probabilistic countmin filter, assuming up to 134M unique k-mers. If you expect
significantly more k-mers than this, for example with longer genomes, you should add
the --exact-count argument to use a hash table instead. This is exact, but may
use more memory.

Sketching RNA viruses

Firstly, if your viral genomes are single stranded, you probably need to add the
--strand-preserved option.

For small genomes where strong selection is present, in the example here shown with influenza genomes, the third codon bias may be so
great that 6-mers (or any multiple of three) have fewer matches than 7-mers.
In a mostly coding genome the third codon position across a gene is more free to mutate, as it
can cause non-synonymous changes, whereas the first and second codons always cause coding changes. This
can cause issues with the core-accessory regression pushing some core distances to 0:

[image: RNA virus with dense seeds]
A solution to this is to use k-mers with spaced seeds, where only every third base
is added to the k-mer. This prevents multiples of the codon size lining up with heavily mutated
bases.

Codon phased seeds

	k-mer

	dense

	Phased seed

	3

	XXX

	X–X–X

	4

	XXXX

	X–X–X–X

	5

	XXXXX

	X–X–X–X–X

Add the --codon-phased option to enable this. This fixes the above example:

[image: RNA virus with codon phased seeds]

Note

When using a database constructed with codon phased seeds for Query assignment (poppunk_assign),
codon phased seeds will automatically be turned on for the query sequences too.

GPU acceleration

There are two pieces of heavy computation that can be accelerated with the use of a CUDA-enabled
GPU:

	Sketching read data --gpu-sketch.

	Calculating core and accessory distances --gpu-dist.

We assume you have a GPU of at least compute capability v7.0 (Tesla) with drivers
correctly installed. You do not need the CUDA toolkit installed, as all libraries are
included with the pp-sketchlib executable.

Note

You will see ‘GPU’ in the progress message if a GPU is successfully being used. If you
see the usual CPU version your install may not have been compiled with CUDA.

Sketching read data with the GPU is a hybrid algorithm which can take advantage of
CPU threads too (which are used to read and process the fastq files). You can add
up to around 16 --threads to keep a typical consumer GPU busy. The sequence data
must fit in device memory, along with a 2Gb countmin filter. The countmin filter
is 134M entries wide. If you expect your reads to have more unique k-mers than this
you may see an increased error rate.

Typical output will look like this:

Sketching 128 read sets on GPU device 0
also using 16 CPU cores
Sketching batch: 1 of 9
k = 29 (100%)
k = 29 (100%)
k = 29 (100%)
k = 29 (100%)
k = 29 (100%)
k = 29 (100%)
k = 29 (100%)
k = 29 (100%)
k = 29 (100%)
k = 29 (100%)
k = 29 (100%)
k = 29 (100%)
k = 29 (100%)
k = 29 (100%)
k = 29 (100%)
k = 29 (100%)
Sketching batch: 2 of 9
k = 29 (100%)
k = 29 (100%)
k = 29 (100%)
k = 29 (100%)
....

Calculating distances with the GPU will give slightly different results to CPU distances,
but typically within 1%, which should not usually affect downstream results. The sketches,
random matches and distances must fit in the device memory. Around 35k bacterial genomes
uses around 10Gb of device memory, typical for a high-end consumer device. If the device memory
is exceeded the calculation will automatically be split into chunks, at only slightly reduced
efficiency. The amount of memory available and needed will be estimated at the start:

Calculating distances on GPU device 0
Estimated device memory required: 565Mb
Total device memory: 11019Mb
Free device memory: 10855Mb
Progress (GPU): 100.0%

Important

The GPU which is device 0 will be used by default. If you wish to target another
GPU, use the --deviceid option. This may be important on computing clusters
where you must use your job’s allocated GPU.

Data quality control (--qc-db)

PopPUNK now comes with some basic quality control options, which you should
run on your sketch database made with --create-db by running --qc-db
as follows:

poppunk --qc-db --ref-db example_db --type-isolate 12754_4_79 --length-range 2000000 3000000

For poppunk_assign, instead add --run-qc:

poppunk_assign --query queries.txt --db example_db --run-qc --max-zero-dist 1 --max-merge 3

The following criteria are available:

	Outlying genome length (calculated during sketching, for assemblies or reads) with --length-range and/or --length-sigma.

	Too many ‘N’s with --prop-n and/or --upper-n.

	Outlying core or accessory distances with --max-pi-dist and --max-a-dist respectively.

	Too many zero distances with --max-zero-dist.

For poppunk --create-db only:

	Names of samples to remove (e.g. failing external QC) with --remove-samples.

For poppunk_assign only:

	Maximum number of clusters a single isolate can cause to merge with --max-merge.

	Betweenness of queries (not automated, just reported) with --betweenness.

In all cases a file will be written at qcreport.txt which lists the failing samples, and the
reasons why they failed. Adding --qc-keep will
only write the file and not remove failing samples.
You may also add --retain-failures
to write a separate sketch database with the failed samples.

Random match chances in PopPUNK are only calculated and added to the database after the chosen
QC step. If you use sketchlib directly, they will be added without any automated QC.

QC of input sequences

The first QC step is applied directly to the input sequences themselves, to identify poor
quality sequences.

You can change the genome length cutoff with --length-sigma which sets the maximum number
of standard deviations from the mean, and --length-range which sets an absolute range of
allowable sizes.

Ambiguous bases are controlled by --prop-n which gives the maximum percentage of Ns,
and --upper-n which gives the absolute maximum value.

QC of pairwise distances

The second QC step uses the pairwise distances, to enable the removal of outlier samples
that may not be part of the taxon being studied. This is with reference to a type
isolate. The type isolate will be selected by PopPUNK, unless specified using --type-isolate.

By default, the maximum allowed accessory distance is 0.5 to ensure you check for contamination.
However, many species do really have high accessory values above this range, in which case you
should increase the value of --max-a-dist.

The maximum allowed core distance is also 0.5, by default. This can be altered with --max-pi-dist.

All sequences differing from the type isolate by distances greater than either threshold will be
identified by the analysis.

Each isolate may have a proportion of distances that are exactly zero as set by
--max-zero-dist.

QC of the network (assign only)

Finally, you may also check network properties.

Maximum number of clusters a single isolate can cause to merge is
set with --max-merge. More than this number of links across the original clusters
will result in removal of the isolate.

Betweenness of queries can be reported with --betweenness, which may be useful
to prune the input in more complex cases. This does not cause automated removal as
it’s difficult to set a sensible threshold across datasets.
You will therefore need to re-run and remove samples yourself.

Fitting new models (--fit-model)

If you cannot find an existing model for your species in the
list [https://www.bacpop.org/poppunk/] you will want to fit your own.
This process is flexible, and there are five different models you can use depending
on the population structure of your dataset.

Note

After fitting a model to a new species we would like to share it on our website,
so others can use it for assigning queries. If you are open to this, please read
Distributing PopPUNK models after this page.

Overview

First, use poppunk --create-db to sketch your input data and calculate distances
between all samples. This is detailed in Sketching (--create-db).

Then, use poppunk --fit-model <model_name> with one of the following model names:

	bgmm – Bayesian Gaussian Mixture Model. Best for small sample collections
with strain-structure. Works best when distance distribution components are clearly
separated.

	dbscan – HDBSCAN. A good general method for larger sample collections with
strain-structure. Some points will always be designated as noise, so a subsequent run
of model refinement may help improve the fit.

	refine – Model refinement. Requires a model already fitted with bgmm or dbscan
and attempts to improve it by maximising the network score. Particularly useful when
components overlap significantly (often due to recombination), or when the strain boundary
is thought to lie somewhere within a component.

	threshold – Apply a given core or accessory distance threshold to define VLKCs. Useful if
a cutoff threshold is already known/calculated, is estimated from a plot, or to compare a threshold
between datasets or species.

	lineage – Lineage clustering. To find lineages within a strain (subclustering), or
find clusters in a population without strain structure. Uses a simple nearest neighbour approach
so is more of a heuristic. Network scores are not meaningful in this mode.

The most useful guide to deciding which model to use is the _distanceDistribution.png file
showing the core and accessory distances. More details on each of these models is given
further down this page.

A completed fit will consist of:

	A _clusters.csv file, which gives the VLKC (strain) for each sample in the database.

	A _unword_clusters.csv file, which gives an English-pronounceable name instead of a number
to each VLKC.

	_fit.npz and _fit.pkl files, which contain numeric data and metadata for the fit.

	A _graph.gt file, which is the network defining the fit in graph-tool format.

	Some plots of the fit, which depend on the specific model used.

	A .refs file, which lists the samples kept as ‘references’ for assigning
future samples (see Distributing PopPUNK models for more details).

This page will use 128 Listeria monocytogenes genomes from Kremer et al [https://doi.org/10.1016/j.cmi.2016.12.008],
which can be downloaded from figshare [https://doi.org/10.6084/m9.figshare.7083389]. The distribution of
core and accessory distances from the --create-db step is as follows:

[image: Core and accessory distances for the example data]
We also show some examples with 616 Streptococcus pneumoniae genomes, which are more complex.
These genomes were collected from Massachusetts,
first reported here [https://www.nature.com/articles/ng.2625] and can be accessed
here [https://www.nature.com/articles/sdata201558].

Common arguments

	--ref-db: the output prefix used with --create-db i.e. the directory where the .h5 file is located

	--output: where to save the model. If not specified this defaults to ref-db.

	--overwrite: overwrite any existing files in the output directory.

	--external-clustering: any additional labels to add to the cluster output.

	--graph-weights: save the edges weights in the network as their Euclidean core-accessory
distances, rather than as 0 or 1 (useful for visualising the network).

External clusters may be other cluster names, such as serotype, sequence type, cgMLST etc.
VLKCs are mapped as one-to-many, so that each strain is labelled with all of
the clusters any of its members is assigned to in this file. This input file must
be comma separated, one sample per line, with the sample name as the first column, and
other clusters as subsequent columns. A header line with ‘sample’ and the names of other cluster
types is required. Output is to output/output_external_clusters.csv.

How good is my fit?

We have found the best way to assess this is to use Creating visualisations on your output
and look at your assigned VLKCs against a tree, to determine whether they have
the specificity required.

You can also compare models with their network score, and
whether the output plots look as expected. Typically the key thing is that
your spatial component nearest the origin is accurate. More detail is given for each model below.

Interpreting the network summary

All fits will output a network summary which looks similar to this:

Network summary:
 Components 59
 Density 0.0531
 Transitivity 0.9966
 Mean betweenness 0.0331
 Weighted-mean betweenness 0.0454
 Score 0.9438
 Score (w/ betweenness) 0.9126
 Score (w/ weighted-betweenness) 0.9009

	Components are the number of VLKCs (strains) found using this model.

	Density is the proportion of distances assigned as ‘within-strain’. Generally
smaller is better as this gives more specific clusters, but too close to zero
may be an over-specific model.

	Transitivity measures whether every member of each strain is connected to every
other member. Closer to 1 is better, but this can be achieved with very loose fits.

	Score synthesises the above as \((1 - \mathrm{density}) * \mathrm{transitivity}\),
which gives a single number between 0 (bad) and 1 (good) which in many cases is
at a maximum when it accurately describes strains in the data.

	Two further scores for larger networks. See Alternative network scores for more information
on these.

bgmm

This mode fits a Bayesian Gaussian mixture model [https://scikit-learn.org/stable/modules/generated/sklearn.mixture.BayesianGaussianMixture.html]
to the core and accessory distances. With few points, methods such as DBSCAN may struggle to find
clusters due to the sparsity, whereas a BGMM can often find a good fit. A further advantage
is that the equation for the posterior is known, so all points will have an assignment and a non-linear
boundary found exactly.

However, when there are a very large number of points the likelihood has a tendency
to totally override the prior in the estimated posterior, meaning many overlapping components
may be fitted, which may give poor clusters, and is less robust to adding more data. It is possible
for this mode to fail to converge, but it is more likely to produce a bad fit in difficult cases.

The key parameter to specify is the maximum number of components --K. You should
choose a number based on the number of components you can see on your distance plot. This
may be automatically reduced if there is insufficent evidence for this many components. As a rule of thumb,
if you have under 150 samples or under 1000 samples and clear components then this mode should give
a good fit.

A better network score is evidence of a better fit, but the output files should also be used to
judge this. With the test dataset, four components are visible:

poppunk --fit-model bgmm --ref-db listeria --K 4
PopPUNK (POPulation Partitioning Using Nucleotide Kmers)
 (with backend: sketchlib v1.6.0
 sketchlib: /Users/jlees/miniconda3/envs/pp-py38/lib/python3.8/site-packages/pp_sketchlib.cpython-38-darwin.so)

Graph-tools OpenMP parallelisation enabled: with 1 threads
Mode: Fitting bgmm model to reference database

Fit summary:
 Avg. entropy of assignment 0.0042
 Number of components used 4

Scaled component means:
 [0.9415286 0.90320047]
 [0.11542755 0.24570244]
 [0.20966101 0.37694884]
 [0.00527421 0.07043826]

Network summary:
 Components 31
 Density 0.0897
 Transitivity 1.0000
 Score 0.9103
Removing 97 sequences

Done

In the output to the terminal:

	The average entropy of assignment is a measure of the certainty of assignment
of each point. Lower is better. Higher values may indicate overlapping components,
perhaps due to high amounts of recombination between strains.

	Number of components used is how many components from K were actually used
in the spatial fit. This is usually equal to K, but may be reduced in small datasets.

	Scaled component means are the centres of the fitted components in the model, where
the core and accessory distances have been rescaled between 0 and 1. These can be
used with Using fit refinement when mixture model totally fails.

The fit actually just uses the component closest to the origin – any distances
assigned to this component are within-strain. This is the most important part of the
fit in this mode.

You can see that this gives a good network score, and fits the data well:

[image: BGMM fit with K = 4]
The position of the boundary is also produced (in red), along with contours of
the fitted mixture components:

[image: BGMM fit with K = 4]
If you make K too low, some components will be merged, resulting in a less-specific
fit with fewer clusters, that do not fully delineate all of the strains (in this
case just finding the two main lineages of Listeria in this data):

poppunk --fit-model bgmm --ref-db listeria --K 2
PopPUNK (POPulation Partitioning Using Nucleotide Kmers)
 (with backend: sketchlib v1.6.0
 sketchlib: /Users/jlees/miniconda3/envs/pp-py38/lib/python3.8/site-packages/pp_sketchlib.cpython-38-darwin.so)

Graph-tools OpenMP parallelisation enabled: with 1 threads
Mode: Fitting bgmm model to reference database

Fit summary:
 Avg. entropy of assignment 0.0007
 Number of components used 2

Scaled component means:
 [0.11627304 0.2432584]
 [0.9415286 0.90320047]

Network summary:
 Components 2
 Density 0.5405
 Transitivity 1.0000
 Score 0.4595
Removing 126 sequences

Done

[image: BGMM fit with K = 2]
Too many components in a small dataset are automatically reduced to an
appropriate number, obtaining the same good fit as above:

poppunk --fit-model bgmm --ref-db listeria --K 10
PopPUNK (POPulation Partitioning Using Nucleotide Kmers)
 (with backend: sketchlib v1.6.0
 sketchlib: /Users/jlees/miniconda3/envs/pp-py38/lib/python3.8/site-packages/pp_sketchlib.cpython-38-darwin.so)

Graph-tools OpenMP parallelisation enabled: with 1 threads
Mode: Fitting bgmm model to reference database

Fit summary:
 Avg. entropy of assignment 0.3195
 Number of components used 4

Scaled component means:
 [0.9415286 0.90320047]
 [3.72458739e-07 4.73196248e-07]
 [0.00527421 0.07043826]
 [0.20966682 0.37695524]
 [0.11542849 0.2457043]
 [1.68940242e-11 2.14632815e-11]
 [7.66987488e-16 9.74431443e-16]
 [3.48211781e-20 4.42391191e-20]
 [1.58087904e-24 2.00845290e-24]
 [7.17717973e-29 9.11836205e-29]

Network summary:
 Components 31
 Density 0.0897
 Transitivity 1.0000
 Score 0.9103
Removing 97 sequences

Done

In a dataset with more points, and less clear components, too many components can lead to
a bad fit:

[image: BGMM fit with K = 10]
This is clearly a poor fit. The real issue is that the component whose mean is nearest
the origin is unclear, and doesn’t include all of the smallest distances.

dbscan

This mode uses HDBSCAN [https://hdbscan.readthedocs.io/en/latest/] to find clusters
in the core and accessory distances. This is a versatile clustering algorithm capable of
finding non-linear structure in the data, and can represent irregularly shaped components
well. Possible drawbacks are that a fit cannot always be found (this can happen
for small datasets with sparse points, or for datasets without much structure in the core
and accessory), and that some points are classified as ‘noise’ so not all of their
edges are included in the network (these are the small black points).

Warning

HDBSCAN models are not backwards compatible from sklearn v1.0 onwards. We
would recommend using at least this version. Even better would be to then run
model refinement (refine) to get a simpler and faster model
for onward query assignment.

dbscan usually needs little modification to run:

poppunk --fit-model dbscan --ref-db listeria
PopPUNK (POPulation Partitioning Using Nucleotide Kmers)
 (with backend: sketchlib v1.6.0
 sketchlib: /Users/jlees/miniconda3/envs/pp-py38/lib/python3.8/site-packages/pp_sketchlib.cpython-38-darwin.so)

Graph-tools OpenMP parallelisation enabled: with 1 threads
Mode: Fitting dbscan model to reference database

Fit summary:
 Number of clusters 5
 Number of datapoints 8128
 Number of assignments 7804

Scaled component means
 [0.94155383 0.90322459]
 [0.00527493 0.07044794]
 [0.20945986 0.37491995]
 [0.12876077 0.34294888]
 [0.11413982 0.24224743]

Network summary:
 Components 31
 Density 0.0897
 Transitivity 1.0000
 Score 0.9103
Removing 97 sequences

Done

In the output to the terminal:

	The number of clusters is the number of spatial components found in the data.

	Number of datapoints is the number of points used (all-vs-all distances), which
may have been subsampled from the maximum.

	Number of assignments is the number of points assign to one of the spatial components,
so excluding noise points.

	Scaled component means are the centres of the fitted components in the model, where
the core and accessory distances have been rescaled between 0 and 1. These can be
used with Using fit refinement when mixture model totally fails.

The fit actually just uses the component closest to the origin – any distances
assigned to this component are within-strain. This is the most important part of the
fit in this mode. In this case the identification of this component is identical to the bgmm
fit, so they produce the same strains. Note there is a small yellow cluster which is poorly
defined, but as it does not impact the within-strain cluster the fit is unaffected:

[image: DBSCAN fit]
You can alter the fit with --D, which sets a maximum number of clusters, and
--min-cluster-prop which sets the minimum number of points a cluster can have (as
a proportion of ‘Number of datapoints). If the means of both of the core and accessory are not
strictly increasing between the within-strain and next further component, the clustering
fails. In this case the minimum number of samples per cluster is halved, and the fit is
tried again. If this goes below ten, no fit can be found.

Increasing --min-cluster-prop or decreasing --D gets rid of the errant cluster above:

poppunk --fit-model dbscan --ref-db listeria --min-cluster-prop 0.01
PopPUNK (POPulation Partitioning Using Nucleotide Kmers)
 (with backend: sketchlib v1.6.0
 sketchlib: /Users/jlees/miniconda3/envs/pp-py38/lib/python3.8/site-packages/pp_sketchlib.cpython-38-darwin.so)

Graph-tools OpenMP parallelisation enabled: with 1 threads
Mode: Fitting dbscan model to reference database

Fit summary:
 Number of clusters 4
 Number of datapoints 8128
 Number of assignments 7805

Scaled component means
 [0.94155383 0.90322459]
 [0.00522549 0.06876396]
 [0.11515678 0.24488282]
 [0.21152104 0.37635505]

Network summary:
 Components 31
 Density 0.0886
 Transitivity 0.9953
 Score 0.9071
Removing 95 sequences

Done

But note that a few more noise points are generated, and fewer samples are removed
when pruning cliques:

[image: DBSCAN fit increasing assignments per cluster]
Setting either --min-cluster-prop or --D too low can cause the fit to fail:

poppunk --fit-model dbscan --ref-db listeria --min-cluster-prop 0.05
PopPUNK (POPulation Partitioning Using Nucleotide Kmers)
 (with backend: sketchlib v1.6.0
 sketchlib: /Users/jlees/miniconda3/envs/pp-py38/lib/python3.8/site-packages/pp_sketchlib.cpython-38-darwin.so)

Graph-tools OpenMP parallelisation enabled: with 1 threads
Mode: Fitting dbscan model to reference database

Failed to find distinct clusters in this dataset

refine

Model refinement is slightly different: it takes a model already fitted by bgmm
or dbscan and tries to improve it by optimising the network score. This starts
with a parallelised global optimisation step, followed by a serial local optimisation
step (which can be turned off with --no-local). Use of multiple --cpus is
effective for these model fits.

Briefly:

	A line between the within- and between-strain means is constructed

	The point on this line where samples go from being assigned as within-strain to between-strain is used as the starting point

	A line normal to the first line, passing through this point is constructed. The triangle formed by this line and the x- and y-axes is now the decision boundary. Points within this line are within-strain.

	The starting point is shifted by a distance along the first line, and a new decision boundary formed in the same way. The network is reconstructed.

	The shift of the starting point is optimised, as judged by the network score. First globally by a grid search, then locally near the global optimum.

Applying this to the Listeria DBSCAN fit (noting that you may specify a separate
directory to load the model from with --model-dir, if multiple model fits are available):

poppunk --fit-model refine --ref-db listeria --model-dir dbscan
PopPUNK (POPulation Partitioning Using Nucleotide Kmers)
 (with backend: sketchlib v1.6.0
 sketchlib: /Users/jlees/miniconda3/envs/pp-py38/lib/python3.8/site-packages/pp_sketchlib.cpython-38-darwin.so)

Graph-tools OpenMP parallelisation enabled: with 1 threads
Mode: Fitting refine model to reference database

Loading DBSCAN model
Loaded previous model of type: dbscan
Initial model-based network construction based on DBSCAN fit
Initial boundary based network construction
Decision boundary starts at (0.63,0.62)
Trying to optimise score globally
Trying to optimise score locally

Optimization terminated successfully;
The returned value satisfies the termination criteria
(using xtol = 1e-05)
Network summary:
 Components 29
 Density 0.0897
 Transitivity 0.9984
 Score 0.9088
Removing 93 sequences

Done

As this model was already well fitted, this doesn’t change much, and finds very similar
VLKC assignments (though noise points are eliminated):

[image: A refine fit on Listeria]
The default is to search along the entire range between the within- and between-strain clusters,
but sometimes this can include undesired optima, particularly near the origin. To exclude these,
use --pos-shift to alter the distance between the end of the search range and the origin
and --neg-shift for the start of the search range.

This mode is more useful in species with a relatively high recombination rate the distinction between
the within- and between-strain distributions may be blurred in core and
accessory space. This does not give the mixture model enough information to
draw a good boundary as the likelihood is very flat in this region:

[image: A bad DPGMM fit]
Although the score of this fit looks ok (0.904), inspection of the network and
microreact reveals that it is too liberal and VLKCs/strains have been merged. This
is because some of the blur between the origin and the central distribution has
been included, and connected clusters together erroneously.

The likelihood of the model fit and the decision boundary looks like this:

[image: The likelihood and decision boundary of the above fit]
Using the core and accessory distributions alone does not give much information
about exactly where to put the boundary, and the only way to fix this would be
by specifying strong priors on the weights of the distributions. Fortunately
the network properties give information in the region, and we can use
--refine-fit to tweak the existing fit and pick a better boundary.

Here is the refined fit, which has a score of 0.939, and 62 rather than 32
components:

[image: The refined fit]
Which, looking at the microreact output [https://microreact.org/project/SJxxLMcaf], is much better:

[image: The refined fit, in microreact]

Alternative network scores

Two additional network scores are now available using node betweenness. We have observed
that in some refined fits to large datasets, some clusters are merged with a single high-stress
edge at a relatively large distance. These scores aim to create a more conservative boundary that splits
these clusters.

For these scores:

	The network is split into \(S\) connected components (the strains) each of size \(w_i\)

	For each component with at least four nodes, the betweenness of the nodes are calculated

	Each component is summarised by the maximum betweenness of any member node \(b^{\mathrm{max}}_i\)

\[\begin{split}\mathrm{score}_1 &= \mathrm{score}_0 \cdot (1 - \frac{1}{S} \sum_{i = 1}^S b^{\mathrm{max}}_i) \\
\mathrm{score}_2 &= \mathrm{score}_0 \cdot (1 - \frac{1}{S \cdot \Sigma w_i} \sum_{i = 1}^S \left[b^{\mathrm{max}}_i \cdot w_i \right])\end{split}\]

Score 1 is printed as score (w/ betweenness) and score 2 as score (w/ weighted-betweenness). Use --score-idx
with 0 (default), 1 (betweenness) or 2 (weighted-betweenness) to choose which score to optimise in refine
mode. The default is the original score 0. Note that scores 1 and 2 may take longer to compute due to
the betweenness calculation, though this can take advantage of multiple --threads.

Unconstrained (two-dimensional) optimisation

In the default mode described above, the boundary gradient is set from the identified
means in the input model, and the position of the intercept is optimised (one-dimensional optimisation).

In cases where the gradient of the boundary is not well set by the two means in the
plot, you can optimise both the intercept and the gradient by adding the --unconstrained option
(which is incompatible with --indiv-refine). This will perform a global search
of 20 x 20 (400 total) x- and y-intercept positions, followed by a 1D local search
to further optimise the intercept (unless --no-local is added).

As this calculates the boundary at ten times as many positions, it is generally expected to
take ten times longer. However, you can effectively parallelise this with up to 20 --threads:

poppunk --fit-model refine --ref-db listeria --model-dir dbscan --unconstrained --threads 4
PopPUNK (POPulation Partitioning Using Nucleotide Kmers)
 (with backend: sketchlib v1.6.2
 sketchlib: /Users/jlees/Documents/Imperial/pp-sketchlib/build/lib.macosx-10.9-x86_64-3.8/pp_sketchlib.cpython-38-darwin.so)

Graph-tools OpenMP parallelisation enabled: with 4 threads
Mode: Fitting refine model to reference database

Loading BGMM 2D Gaussian model
Loaded previous model of type: bgmm
Initial model-based network construction based on Gaussian fit
Initial boundary based network construction
Decision boundary starts at (0.52,0.43)
Trying to optimise score globally
Trying to optimise score locally

Optimization terminated successfully;
The returned value satisfies the termination criteria
(using xtol = 1e-05)
Network summary:
 Components 59
 Density 0.0531
 Transitivity 0.9966
 Mean betweenness 0.0331
 Weighted-mean betweenness 0.0454
 Score 0.9438
 Score (w/ betweenness) 0.9126
 Score (w/ weighted-betweenness) 0.9009
Removing 545 sequences

Done

Which gives a slightly higher network score, though overall similar clusters:

[image: Refining fit with --unconstrained]
This is because the gradient from the 1D optimisation was well set. Unconstrained optimisation
can be useful with clusters which aren’t parallel to the line that connects them. This is an
example in E. coli:

	
[image: _images/ecoli_refine_constrained.png]

1D refine fit between DBSCAN cluster centroids

	
[image: _images/ecoli_refine_unconstrained.png]

Unconstrained 2D fit over a greater range

The search range will always be defined by a trapezium in light red – bounded by
the two axes, and two lines passing through the means which are normal to the line
which connects the means.

Using fit refinement when mixture model totally fails

If the mixture model does not give any sort of reasonable fit to the points,
you can manually provide a file with --manual-start to give the starting parameters to
--refine-fit mode. The format of this file is as follows:

start 0,0
end 0.5,0.6
scaled True

A key, followed by its value (space separated).

start and end define the points (x,y) to draw the line between.
These define the two red points (and therefore the
search range) in the output plot.

scaled defines whether these are on the [0,1] scale. If these have been set
using means from the terminal output this should be True. Otherwise, if you
have set them based on the plot (unscaled space), set to False.

Using core/accessory only

In some cases, such as analysis within a lineage, it may be desirable to use
only core or accessory distances to classify further queries. This can be
achieved by adding the --indiv-refine both option, which will allow these boundaries to be
placed independently, allowing the best fit in each case:

poppunk --fit-model refine --ref-db listeria --model-dir dbscan --indiv-refine both
PopPUNK (POPulation Partitioning Using Nucleotide Kmers)
 (with backend: sketchlib v1.6.0
 sketchlib: /Users/jlees/miniconda3/envs/pp-py38/lib/python3.8/site-packages/pp_sketchlib.cpython-38-darwin.so)

Graph-tools OpenMP parallelisation enabled: with 1 threads
Mode: Fitting refine model to reference database

Loading DBSCAN model
Loaded previous model of type: dbscan
Initial model-based network construction based on DBSCAN fit
Initial boundary based network construction
Decision boundary starts at (0.63,0.62)
Trying to optimise score globally
Trying to optimise score locally

Optimization terminated successfully;
The returned value satisfies the termination criteria
(using xtol = 1e-05)
Refining core and accessory separately
Initial boundary based network construction
Decision boundary starts at (0.63,0.62)
Trying to optimise score globally
Trying to optimise score locally

Optimization terminated successfully;
The returned value satisfies the termination criteria
(using xtol = 1e-05)
Initial boundary based network construction
Decision boundary starts at (0.63,0.62)
Trying to optimise score globally
Trying to optimise score locally

Optimization terminated successfully;
The returned value satisfies the termination criteria
(using xtol = 1e-05)
Network summary:
 Components 29
 Density 0.0897
 Transitivity 0.9984
 Score 0.9088
Network summary:
 Components 31
 Density 0.0897
 Transitivity 1.0000
 Score 0.9103
Network summary:
 Components 31
 Density 0.0808
 Transitivity 0.9862
 Score 0.9064
Removing 93 sequences

Done

There are three different networks, and the core and accessory boundaries will
also be shown on the _refined_fit.png plot as dashed gray lines:

[image: Refining fit with core and accessory individuals independently]
To use one of these for your saved model, rerun, but instead setting
--indiv-refine core or --indiv-refine accessory.

Running with multiple boundary positions

To create clusters at equally spaced positions across the refinement range, add
the --multi-boundary <n> argument, with the number of positions specified by
<n>. This will create up to <n> sets of clusters, with boundaries equally spaced
between the origin and the refined boundary position.

Trivial cluster sets, where every sample is in its own cluster, will be excluded, so
the final number of clusters may be less than <n>.

For a use of these cluster sets, see the Iterative PopPUNK section.

threshold

In this mode no model is fitted. You provide the threshold at which within- and
between-strain distances is drawn. This can be useful if refine cannot find a boundary
due to a poorly performing network score, but one can clearly be seen from the plot.
It may also be useful to compare with other fits from related species where a boundary
has been identified using one of the fitting procedures.

Currently only a core-distance boundary is supported (if you would like an accessory or
combined mode available, please raise an issue [https://github.com/johnlees/PopPUNK/issues]).
Provide the cutoff with --threshold:

poppunk --fit-model threshold --ref-db listeria --threshold 0.003
PopPUNK (POPulation Partitioning Using Nucleotide Kmers)
 (with backend: sketchlib v1.6.0
 sketchlib: /Users/jlees/miniconda3/envs/pp-py38/lib/python3.8/site-packages/pp_sketchlib.cpython-38-darwin.so)

Graph-tools OpenMP parallelisation enabled: with 1 threads
Mode: Fitting threshold model to reference database

Network summary:
 Components 31
 Density 0.0897
 Transitivity 1.0000
 Score 0.9103
Removing 97 sequences

Done

[image: A threshold fit on Listeria]

lineage

This mode defines clusters by joining nearest neighbours. As this will typically
define subclusters within strains, we refer to these as ‘lineages’. This can be used
to find subclusters in addition to one of the above models, or for species without
strain-structure (e.g. some viruses, Neisseria gonorrhoeae, Mycobacterium tuberculosis).
This is the highest resolution (most specific clusters) provided directly by PopPUNK. If it does
not meet your needs, take a look at Subclustering with PopPIPE for other options.

A model is not fitted, and a simple data-driven heuristic is used. For each sample, the
nearest \(k\) neighbours will be indentified, and joined in the network. Connected components
of the network define lineages, as in the other models. Only core distances are used (add --use-accessory to modify this),
and in the case of ties all distances are included. Note that these are not necessarily
expected to be transitive, so network scores are not as informative of the optimum.

We refer to \(k\) as the ‘rank’ of the model. Typically you won’t know which rank
to use beforehand, so you can provide multiple integer values to the --rank option, comma separated.
Clusters from all ranks will be output, and all used with Query assignment (poppunk_assign). \(k = 1\) is the
most specific rank, and higher values will form looser clusters. With the Listeria example:

poppunk --fit-model lineage --ref-db listeria --ranks 1,2,3,5
PopPUNK (POPulation Partitioning Using Nucleotide Kmers)
 (with backend: sketchlib v1.6.0
 sketchlib: /Users/jlees/miniconda3/envs/pp-py38/lib/python3.8/site-packages/pp_sketchlib.cpython-38-darwin.so)

Graph-tools OpenMP parallelisation enabled: with 1 threads
Mode: Fitting lineage model to reference database

Network for rank 1
Network summary:
 Components 26
 Density 0.0271
 Transitivity 0.1834
 Score 0.1785
Network for rank 2
Network summary:
 Components 12
 Density 0.0428
 Transitivity 0.3528
 Score 0.3377
Network for rank 3
Network summary:
 Components 6
 Density 0.0589
 Transitivity 0.4191
 Score 0.3944
Network for rank 5
Network summary:
 Components 2
 Density 0.0904
 Transitivity 0.5319
 Score 0.4838
Parsed data, now writing to CSV

Done

This has produced four fits, with ranks 1, 2, 3 and 5 (with fit information contained in
the .pkl file, and a .npz file for each rank). The _clusters.csv will contain the clusters
from the lowest rank. The _lineages.csv file contains all of the assignments, a column
with all of the ranks hyphen-separated (which will give clusters indentical to the lowest rank):

id,Rank_1_Lineage,Rank_2_Lineage,Rank_3_Lineage,Rank_5_Lineage,overall_Lineage
12673_8#24,18,2,2,1,18-2-2-1
12673_8#26,4,2,2,1,4-2-2-1
12673_8#27,26,1,1,1,26-1-1-1
12673_8#28,1,1,1,1,1-1-1-1
12673_8#29,4,2,2,1,4-2-2-1
12673_8#31,18,2,2,1,18-2-2-1
12673_8#32,9,8,1,1,9-8-1-1
12673_8#34,7,7,1,1,7-7-1-1
12673_8#36,1,1,1,1,1-1-1-1

The best way to assess the ranks is by visualising them (Creating visualisations):

poppunk_visualise --distances listeria/listeria.dists --ref-db listeria --microreact

Graph-tools OpenMP parallelisation enabled: with 1 threads
PopPUNK: visualise
Loading previously lineage cluster model
Writing microreact output
Parsed data, now writing to CSV
Building phylogeny
Running t-SNE

Done

This can be loaded in microreact: https://microreact.org/project/dVNMftmK6VXRvDxBfrH2y.
Rank 1 has the smallest clusters:

[image: Rank 1 lineage fit for Listeria]
Rank 3 has larger clusters. Some of these clusters are polyphyletic on the core neighbour-joining
tree:

[image: Rank 3 lineage fit for Listeria]
At the model fit stage, you will also get histograms which show the distances included
in the network, a useful comparison with the original distance distribution and between ranks:

	
[image: _images/listeria_lineage_rank_1_histogram.png]

Rank 1

	
[image: _images/listeria_lineage_rank_3_histogram.png]

Rank 3

Use an existing model with new data

There is also one further mode, --use-model, which may be useful in limited circumstances. This
applies any of the above models to a new dataset without refitting it. This may be useful if a reference
dataset has changed (been added to or removed from) and you do not wish to refit the model, for example
because it is already in use. However, typically you would use Query assignment (poppunk_assign) with --update-db
to add to a model:

poppunk --use-model --ref-db new_db --model-dir old_db
PopPUNK (POPulation Partitioning Using Nucleotide Kmers)
 (with backend: sketchlib v1.6.0
 sketchlib: /Users/jlees/miniconda3/envs/pp-py38/lib/python3.8/site-packages/pp_sketchlib.cpython-38-darwin.so)

Graph-tools OpenMP parallelisation enabled: with 1 threads
Mode: Using previous model with a reference database

Loading BGMM 2D Gaussian model
Loaded previous model of type: bgmm
Network summary:
 Components 31
 Density 0.0897
 Transitivity 1.0000
 Score 0.9103
Removing 97 sequences

Done

Distributing PopPUNK models

If you have fitted a model yourself, you may be interested in distributing it so that
others can use it for your species. This will give consistent cluster names across datasets,
mean the high-quality tested fit can be reused, and speeds up future analysis.

Please contact us at poppunk@bacpop.org. We would be happy to add your sketches and
fitted model to our other databases [https://poppunk.net/pages/databases.html].

Database contents

A database requires the following files:

	.h5. The sketch database, a HDF5 file.

	.dists.pkl and .dists.npy files. Distances for all vs all samples in the sketch database.

	_fit.npz and _fit.pkl files. Python files which describe the model fit.

	_graph.gt. The network relating distances, fit and strain assignment for all samples in the sketch database.

	_clusters.csv. The strain assignment of all samples in the sketch database.

If you used a lineage you will also need:

	rank_k_fit.npz. Distances for each rank \(k\) fit.

	_lineages.csv. Combined lineage assignments for each rank.

You may also have .refs versions of these files, which are pruned to contain just the
reference samples (see below). We would highly recommend including the output/output.refs file
with any database, even though it is not strictly required, as it will speed up query assignment.
Lineage models do not use references.

Note

If the database is very large, you may consider just distributing the .refs files. This will
enable query assignment, but visualisation and subclustering within strains will no longer be
possible, as full information within each strain will be missing.

These databases can be automatically generated using the poppunk_distribute_fit.py
script after model fitting. See the Scripts page for more information.

Picking references

PopPUNK automatically prunes redundant sequence information from databases by removing
samples from cliques (where every sample is in the same strain as every other sample). This
algorithm has changed slightly from the originally published one:

	Split the graph into connected components (strains), which are analysed in parallel.

	Identify a clique. If no samples in the clique are already references, add one sample as a reference.

	Prune the clique from the graph, creating a subgraph.

	Recursively apply steps 2-3 until only two samples or fewer remain.

	Add the remaining samples as references

	Create the reference graph, and find connected components again.

	For any samples which are no longer in the same connected component, find a minimum path
between them in the full graph, and add all samples in this path as references.

This makes the algorithm scale better, and ensures clusters remain connected. You may find
that more references are picked than before using this method, which is a small cost for the
increase robustness.

This process occurs automatically after the model fit. In the Listeria example:

Removing 97 sequences

31 strains are represented by \(128 - 97 = 31\) references, exactly one reference
per cluster, which is the minimum. The refined fit removes 93 sequences with 29 strains,
so some larger clusters need to be represented by multiple references. The names of the chosen
references are written to the .refs file. In addition, the distances, sketch database and graph
have the non-reference sequences pruned and saved with .refs suffixes. This gives a complete database
suitable for assignment with references only, should the full database be prohibitively large.

Note

Previous fans (users) of PopPUNK may remember the --full-db option which switched off
reference picking. This was useful, as reference-only databases always lost information. This
option has now been removed, and reference picking will always be run. Both full and reference
databases are always produced (apart from in lineage mode). The default assignment uses
just references, but has the full database available for strain visualisation and subclustering.

If you interrupt the reference picking the output will still be valid. If you wish to
run reference picking on a database where it is missing (due to being from an older version,
or interrupted) you can do this with the poppunk_references script.

Query assignment (poppunk_assign)

This is the recommended mode to use PopPUNK, as long as a database is available for
your species. If there is no database available, you can fit your own (Fitting new models (--fit-model)).

Briefly, download your reference database [https://www.bacpop.org/poppunk/] and run:

poppunk_assign --db database --query qfile.txt \
--output poppunk_clusters --threads 8

Downloading a database

Current PopPUNK databases can be found here: https://www.bacpop.org/poppunk/

We refer to sequences in the database as references, and those being added
as queries. The clusters assigned by PopPUNK are variable-length-k-mer clusters (VLKCs).

A database called database will contain the following files, in database/:

	database.h5 – the sketches of the reference sequences generated by pp-sketchlib.

	database.dists.npy and database.dists.pkl – the core and accessory distances for
all pairwise comparisons in the sketch database.

	database_fit.npz and database_fit.pkl – the model fit to the core and accessory distances.

	database_graph.gt – the network defining the fit (loadable with graph_tool).

	database_clusters.csv – the PopPUNK clusters for the reference sequences.

	database.refs – a minimal list of references needed to produce correct clusters.

If the .refs file is missing, all of the samples in the sketch database will be
used in the distance calculations.

You can use the following arguments to individually target these items if necessary,
for example when using an alternative fit, or if split across different directories. The
examples below refer to the default database name:

	(required) --db database – the name of directory containing the .h5 file.

	--distances database/database.dists – prefix of the distances.

	--model-dir database – directory containing the model fit and network (dists + fit define the network).

	--previous-clustering database – directory containing the PopPUNK clusters for the references.

Clustering your genomes

Create a file which lists your sample names and paths to their sequence data. This file
has no header, is tab separated, and contains the sample name in the first column. Subsequent
columns may contain paths to either assembled or raw read data (the type will automatically
be inferred by checking for the presence of quality scores). Data may be gzipped or uncompressed:

MS1 ms1_assembled.fa
MS2 ms2_assembled.fa
SM14 SM14_1.fq.gz SM14_2.fq.gz

Save this as qfile.txt. You’re now ready to cluster them!
Run the following command:

poppunk_assign --db database --query qfile.txt \
--output poppunk_clusters --threads 8

This will first of all sketch your input genomes, saving them in poppunk_clusters/poppunk_clusters.h5.
If you need to rerun part of the analysis with different options this will automatically be picked up
and loaded.

Note

Data quality control (--qc-db) does not apply to query sequences. A test for maximum accessory distance
will be made, but the program will only emit warnings and will run with all genomes
anyway. Most options for sketching will be taken from the reference database, but you
can still specify error filtering options from read input (--min-kmer-count and
--exact-count) and specify your input as --strand-preserved. See Sketching (--create-db) for
more information on these options.

Next, core and accessory distances between your input sketches and those in the database
will be computed. This has complexity \(O(RQ)\) where \(R\) is the number of
samples in database_references.refs and \(Q\) is the number in qfile.txt. These distances
are then fed into the model and used to update the network, and therefore clusters.

The output will look something like this:

Graph-tools OpenMP parallelisation enabled: with 4 threads
PopPUNK (POPulation Partitioning Using Nucleotide Kmers)
 (with backend: sketchlib v1.5.1
 sketchlib: /Users/jlees/miniconda3/envs/pp-py38/lib/python3.8/site-packages/pp_sketchlib.cpython-38-darwin.so)
Mode: Assigning clusters of query sequences

Sketching genomes using 8 thread(s)
Calculating distances using 8 thread(s)
Loading previously refined model
Network loaded: 2007 samples
Found novel query clusters. Calculating distances between them.
Could not find random match chances in database, calculating assuming equal base frequencies
Calculating distances using 8 thread(s)

Your VLKCs will be written to poppunk_clusters/poppunk_clusters_clusters.csv:

Taxon,Cluster
21946_6_66,9
22695_3_148,9
22984_8_88,9
21946_6_245,116
21946_6_189,814
22695_3_73,814
21946_6_50,422
21903_8_95,148
21903_8_250,301
22984_8_47,70

These names are identical to those used in the reference database, so retain
the same meaning between studies. If new clusters are found they will be numbered
in ascending order from largest to smallest, beginning from the end of the reference
clusters.

Note

You may observe clusters merging (but never splitting). If your genomes
do cause clusters to merge this will be noted in the output, and the new
clusters will be named using the old ones. For example, if clusters 23 and 38
merged, the new cluster would be called 23_38.

By default, only the query genome clusters are included here. The reference genome
clusters are considered unchanged from the input. If there are many merges and you
wish to know their new cluster IDs, use --update-db (Updating the database).

You can use poppunk_visualise to look at your results. Here’s an example output
to cytoscape, showing the clusters as colours, reference genomes as circles and
queries as triangles (open in a new tab to zoom on detail):

[image: Network produced after query assignment]

Adding external cluster labels (MLST, CC etc)

Add the --external-clustering argument to add a CSV file of cluster definitions
which the output will be additionally labelled with, and output to database/database_external_clusters.csv.
These can be any cluster definitions you wish, with as many columns as you like. A header row is required:

sample,GPSC,MLST
23430_1_186,1,22
17794_6_29,23,43
12291_4_13,1,2

For each PopPUNK cluster, all the samples found in said cluster will be accumulated.
From these accumulated samples the external clusters will be collected, and assigned
to all of these examples. This may give you a one-to-one mapping between PopPUNK clusters
and your external cluster, or you may find multiple external clusters refer to the
PopPUNK cluster giving output such as 227;811;763;824.

Using a model fitted with --indiv-refine

If the database was fitted with the refine fit mode, and indiv-refine you may have
a core distance boundary, accessory boundary and combined core-accessory boundary fit. The
default is to use the combined boundary, to use the others add --core-only or
--accessory-only.

Increasing speed

Query assignment is the most efficient mode in which to run PopPUNK, typically requiring \(Q\) sketches and
\(RQ\) distances. If you are updating the database, this increases to \(Q^2 + RQ\)
distances. If you are assigning a very large number of queries you can run poppunk_assign
with --update-db repeatedly for batches of query input, as the \(Q^2\) term will
be reduced by clique-pruning at each iteration.

Straightforward ways to increase speed include:

	Add --gpu-dist, if you have a GPU available.

	Add --gpu-sketch, if your input is all reads, and you have a GPU available. If
your input is a mix of assemblies and reads, run in two separate batches, with
the batch of reads using this option.

	Increase --threads.

Updating the database

If you want to add your query genomes into the reference database so that they
can be used to inform future cluster assignment, this is as simple as adding the
--update-db option to the command above. This is particularly useful when novel
query clusters have been found – they will then be the consistent name for future assignments:

poppunk_assign --db database --query qfile.txt \
--output poppunk_clusters --threads 8 --update-db

Graph-tools OpenMP parallelisation enabled: with 4 threads
PopPUNK (POPulation Partitioning Using Nucleotide Kmers)
 (with backend: sketchlib v1.5.1
 sketchlib: /Users/jlees/miniconda3/envs/pp-py38/lib/python3.8/site-packages/pp_sketchlib.cpython-38-darwin.so)
Mode: Assigning clusters of query sequences

Sketching 28 genomes using 4 thread(s)
Writing sketches to file
Calculating distances using 4 thread(s)
Loading BGMM 2D Gaussian model
Network loaded: 18 samples
Calculating all query-query distances
Could not find random match chances in database, calculating assuming equal base frequencies
Calculating distances using 4 thread(s)
Updating reference database to poppunk_clusters
Removing 27 sequences

Done

The new database contains all of the reference sequences, and all of your query sequences.
The poppunk_clusters folder will now contain all of the files of a reference
database listed above, except for the model. You can use --model-dir to target
this for future assignment, or copy it over yourself. Alternatively, if you run
with the same --output folder as --ref-db, adding --overwrite, the original
input folder will contain the updated database containing everything needed.

Note

This mode can take longer to run with large numbers of input query genomes,
as it will calculate all \(Q^2\) query-query distances, rather than
just those found in novel query clusters.

Visualising results

If you wish to produce visualisations from query assignment results the best
way to do this is to run with --update-db, and then run poppunk_visualise
on the output directory, as if visualising a full reference fit.

However, it is possible to run directly on the outputs by adding a --ref-db
as used in the assign command, and a --query-db which points to the --output
directory used in the assign command. In this mode isolates will be annotated
depending on whether they were a query or reference input.

Warning

Without --update-db, visualisation is required to recalculate all query-query distances
each time it is called. If your query set is large and you want repeated visualisations,
run poppunk_assign with --update-db.

See Creating visualisations for more details.

Creating visualisations

We have moved visualisation tools into their own program poppunk_visualise, both
to reinforce our commitment to UK spellings, and so that you can rerun visualisations
with different outputs and settings without rerunning the other parts of the code.

Starting with either a full database where you have fitted a model (Fitting new models (--fit-model)), or
output where you have assigned queries using an existing database (Query assignment (poppunk_assign)), you
can create outputs for external interactive visualisation tools:

	Microreact [https://microreact.org/] – a genomic epidemiology visualisation tool, displaying clusters, phylogeny and accessory clustering.

	GrapeTree [https://achtman-lab.github.io/GrapeTree/MSTree_holder.html] – a tool to visualise strains (designed for cgMLST).

	Phandango [https://jameshadfield.github.io/phandango/#/] – visualisation linking genomes and phylogenies.

	Cytoscape [https://cytoscape.org/] – a network visualisation tool, which can be used to create, view and manipulate a layout of the graph.

At least one of these output types must be specified as a flag.

Important

If you run a visualisation on output from query assignment (Query assignment (poppunk_assign))
this will not contain all the necessary distances, and they will be calculated before
the visualisation files are produced.
You will see a message Note: Distance will be extended to full all-vs-all distances.
If you are running multiple visualisations this calculation will be completed every time. To avoid
this re-run your assignment with --update-db, which will add these distances in permanently.

Common options

Some typical commands for various input settings (with --microreact, but this can
be altered to any output type) with a database example.

Visualisation of a full database:

poppunk_visualise --ref-db example_db --output example_viz --microreact

Visualisation after query assignment:

poppunk_visualise --ref-db example_db --query-db example_query --output example_viz --microreact

Visualisation when sketches and models are in different folders:

poppunk_visualise --ref-db example_db --previous-clustering example_lineages/example_lineages_lineages.csv \
 --model-dir example_lineages --output example_viz --microreact

Visualisation with a lineage model, which has been queried (query-query distances must be provided):

poppunk_visualise --distances example_query/example_query.dists --ref-db example_db \
 --model-dir example_lineages --query-db example_lineage_query \
 --output example_viz --microreact

Notable modifiers include:

	--include-files – give a file with a subset of names to be included in the visualisation.

	--external-clustering – other cluster names to map to strains (such as MLST, serotype etc),
as described in model fitting and query assignment.

	--info-csv – similar to the above, but a CSV which is simply (inner-)joined to the output on sample name.

	--rapidnj – the location of a rapidnj [https://birc.au.dk/software/rapidnj/] binary,
used to build the core NJ tree. We highly recommend using this for any tree-building (and is included with
the conda install). This defaults to rapidnj on the PATH. Set blank to use dendropy instead (slower, especially
for large datasets).

	--core-only/--accessory-only – use the core or accessory fit from an individually refined model (see Using core/accessory only).

	--threads, --gpu-dist, --deviceid, --strand-preserved – querying options used if extra distance calculations are needed.
To avoid these, rerun your query with --update-db.

Microreact

Adding the --microreact flag will create the following files:

	_microreact_clusters.csv – the strain or lineage assignments with headers formatted for microreact, plus anything from --info-csv.

	_core_NJ.nwk – a neighbour-joining tree from the core distances.

	_perplexity20.0_accessory_mandrake.dot – a 2D embedding of the accessory distances, produced using mandrake [https://github.com/bacpop/mandrake] (in this case with
Setting the perplexity parameter for mandrake 20).

From version 2.5.0 this will also include:

	
	.microreact – a Microreact compatible JSON containing all of the above, which
	can be uploaded directly.

If you add --api-key and provide your account’s API key <https://docs.microreact.org/api/access-tokens>__
this will automatically create an instance, and the URL will be output to the terminal.

Otherwise, open https://microreact.org/upload in your browser, and drag and drop these three files
to create your visualisation. Here is the result of running the visualisation on the
Listeria BGMM model:

poppunk_visualise --ref-db listeria --microreact --threads 8

Graph-tools OpenMP parallelisation enabled: with 8 threads
PopPUNK: visualise
Loading BGMM 2D Gaussian model
Completed model loading
Building phylogeny
Writing microreact output
Parsed data, now writing to CSV
Running mandrake
Running on CPU
Preprocessing 128 samples with perplexity = 20 took 0ms
Optimizing Progress: 99.9%, eta=0.0010, Eq=0.2583546852, clashes=2.1%
Optimizing done in 30s
Provide --api-key to create microreact automatically

Done

This can be viewed at https://microreact.org/project/3JAZKqzJiaNyViWXindNLv-listeria-poppunk-perplexity-20:

[image: Microreact page for Listeria monocytogenes]
Useful controls include the tree shape, accessed with the control slider in the
top right of the phylogeny page, and the metadata labels, accessed with the ‘eye’
on the right of the page. When visualising lineages, changing the ‘Colour by’ is useful
to compare results from different ranks.

Setting the perplexity parameter for mandrake

In mandrake an embedding of the accessory genome distances is found which
represents local structure of the data. Isolates with similar accessory content
will visually appear in clusters together.

The perplexity sets a guess about the number of close neighbours each point
has, and is a trade-off between local and global structure. t-SNE (and by extension mandrake) is reasonably
robust to changes in the perplexity parameter (set with --perplexity when
creating microreact output with --microreact),
however we would recommend trying a few values to get
a good embedding for the accessory distances.

There is a good discussion of the effect of perplexity here [https://distill.pub/2016/misread-tsne/]
and the sklearn documentation shows some examples of the effect of changing
perplexity [http://scikit-learn.org/stable/auto_examples/manifold/plot_t_sne_perplexity.html].
In mandrake, points will usually appear ‘tighter’ than in t-SNE, and form more obvious clusters.

In the example with Listeria monocytogenes above, a perplexity of 20 gives clear clustering of
the accessory genome content, condordant with the core genome structure (data [https://microreact.org/project/3JAZKqzJiaNyViWXindNLv-listeria-poppunk-perplexity-20]):

With a lower perplexity of 5, the clustering is not as tight, but it still looks ok
(data [https://microreact.org/project/tXHmDR4NRfmTeemfjqbzip-listeria-poppunk-perplexity-5]):

[image: Microreact plot of results with perplexity = 5]
30 is a good default, but you may wish to try other values, particularly with
larger or smaller datasets. You can re-run the mandrake using the poppunk_mandrake
command, providing the distances from the previous run:

poppunk_mandrake --distances strain_db/strain_db.dists --output strain_db \
--perplexity 50

GrapeTree

Adding the --grapetree flag will create:

	_microreact_clusters.csv – the strain or lineage assignments with headers formatted for grapetree, plus anything from --info-csv.

	_core_NJ.nwk – a neighbour-joining tree from the core distances.

Open https://achtman-lab.github.io/GrapeTree/MSTree_holder.html in your browser, and use
the ‘Load files’ button once for each of the files to add the tree and strain assignments to
GrapeTree. This will display an unrooted tree with your clusters:

[image: Grapetree visualisation of results]
One of GrapeTree’s key features is the ability to collapse branches, and condense information
into nodes. By going to Tree Layout -> Branch style -> Collapse branches, and setting the long
branch to be shortened, one can obtain a view which shows strain prevalence and relationships:

[image: Grapetree visualisation of results]
There is also a handy ‘Export to Microreact’ button in GrapeTree, though this will
not include the accessory embedding, so you may wish to add the --microreact flag
and generate the files yourself.

Phandango

Adding the --phandango flag will create:

	_phandango_clusters.csv – the strain or lineage assignments with headers formatted for phandango, plus anything from --info-csv.

	_core_NJ.tree – a neighbour-joining tree from the core distances.

Open https://www.phandango.net in your browser, and use
the ‘Load files’ button once for each of the files to add the tree and strain assignments to
GrapeTree. This will display the tree with your clusters:

[image: Phandango visualisation of results]
Press ‘s’ to access settings, and ‘p’ to create an .svg file. Phandango is most useful
with a genome (.gff file), and either a plot of recombination, accessory genome analysis
or GWAS results. See the documentation for more information.

Cytoscape

Cytoscape is different from the above modes as it creates a layout and visualisation of
the graph used to create strains from distances. This can be useful for more detailed
investigation of network scores, particularly in strains which have less than perfect transitivity.

Add the --cytoscape option, and also --network-file to point to the
network you wish to visualise:

poppunk_visualise --ref-db listeria --cytoscape --network-file listeria/listeria_graph.gt

Graph-tools OpenMP parallelisation enabled: with 1 threads
PopPUNK: visualise
Loading BGMM 2D Gaussian model
Writing cytoscape output
Network loaded: 128 samples
Parsed data, now writing to CSV

Done

Which will create:

	_cytoscape.csv – the strain or lineage assignments with headers formatted for cytoscape, plus anything from --info-csv.

	_cytoscape.graphml – the network in graphml format.

The .graphml file is an XML file which contains definitions of the nodes (samples)
and edges (within-strain distances) connecting them. If you used --graph-weights
when you fitted your model the edges will be annotated with their Euclidean distances
in the ‘weight’ attribute (which you will need to tell cytoscape). These can be added
with the poppunk_add_weights script if this flag was not used.

Open cytoscape [http://www.cytoscape.org/] and drag and drop the .graphml
file onto the window to import the network. Import -> table -> file to load the
CSV. Click ‘Select None’ then add the ‘id’ column as a key, and any required
metadata columns (at least the ‘Cluster’ column) as attributes. Make sure
‘Node Table Columns’ is selected as the data type.

The graphml file does not contain a layout for the graph, that is, positions of
nodes and edges are not specified for a visualisation. These will be calculated by cytoscape,
automatically for small graphs, and with the ‘Layout’ menu for larger graphs. The ‘Prefuse force directed layout’
or ‘yFiles Organic Layout’ work well. Select the ‘weight’ dropdown to use the edge-lengths
when drawing the network.

Warning

We have found that making graphs with >10k nodes may exceed the memory on a typical
laptop. To view larger graphs, first splitting into subgraphs of each connected component
is very helpful. Older versions of cytoscape allowed you to split the graph into connected
components, but newer versions have removed this feature. This can be done programmatically
with networkx or graph-tool in python, or igraph in R.

Click on ‘Style’ and change the node fill colour to be by cluster, the mapping
type as discrete, then right click to autogenerate a colour scheme (‘Random’ is usually best). You can
also modify the node size and shape here. Here is the Listeria example, using edge weights in the layout:

[image: Cytoscape plot of network]
If you used assign query mode you will also have a column with ‘Query’ or ‘Reference’, which can
be used to map to different shapes or colours:

[image: Network produced after query assignment]
Adding an info CSV, or loading external tables directly into cytoscapes gives further options
for investigating individual strains:

[image: Network with added annotation]
In some cases, edges which are between strain links may have been erroneously included
in the network. This could be due to poor model fit, or a poor quality
sequence. Use Tools -> NetworkAnalyzer -> Analyze Network to compute
information for each node and edge. It may help to analyze connected components separately.
They can be split under Tools -> NetworkAnalyzer -> Subnetwork Creation.

Here is an example where an errant node is connecting two clusters into one
large cluster, which should be split:

[image: Cytoscape plot of network]
The incorrect node in question has a low CluteringCoefficient and high Stress.
The EdgeBetweeness of its connections are also high. Sorting the node and edge
tables by these columns can find individual problems such as this.

Minimum spanning trees

Using the distances and a network, you can generate a minimum spanning tree. This
can be useful when a neigbour joining tree is difficult to produce, for example
if the dataset is very large, and in some cases has uses in tracing spread
(take care with this interpretation, direction is not usually obvious).

There are three different ways to make MSTs, depending on how much data you have.
Roughly:

	‘Small’: Up to \(\sim 10^3\) samples.

	‘Medium’: Up to \(\sim 10^5\) samples.

	‘Large’: Over \(10^5\) samples.

In each mode, you can get as output:

	A plot of the MST as a graph layout, optionally coloured by strain.

	A plot of the MST as a graph layout, highlighting edge betweenness and node degree.

	The graph as a graphml file, to view in Cytoscape.

	The MST formatted as a newick file, to view in a tree viewer of your choice.

With small data

For a small dataset it’s feasible to find the MST from your (dense) distance matrix.
In this case you can use Creating visualisations with the --tree option:
use --tree both to make both a MST and NJ tree, or --tree mst to just make
the MST:

poppunk_visualise --ref-db listeria --tree both --microreact --output dense_mst_viz

Graph-tools OpenMP parallelisation enabled: with 1 threads
PopPUNK: visualise
Loading BGMM 2D Gaussian model
Completed model loading
Generating MST from dense distances (may be slow)
Starting calculation of minimum-spanning tree
Completed calculation of minimum-spanning tree
Drawing MST
Building phylogeny
Writing microreact output
Parsed data, now writing to CSV
Running t-SNE

Done

Note the warning about using dense distances. If you are waiting a long time at this
point, or running into memory issues, considering using one of the approaches below.

Note

The default in this modeis to use core distances, but you can use accessory or Euclidean
core-accessory distances by modifying --mst-distances.

This will produce a file listeria_MST.nwk which can be loaded into Microreact,
Grapetree or Phandango (or other tree viewing programs). If you run with --cytoscape,
the .graphml file of the MST will be saved instead.

You will also get two visualisations of a force-directed graph layout:

	
[image: _images/mst_small_clusters.png]

MST coloured by strain

	
[image: _images/mst_small_stress.png]

MST coloured by betweenness

The left plot colours nodes (samples) by their strain, with the colour selected
at random. The right plot colours and sizes nodes by degree, and edges colour and
width is set by their betweenness.

With medium data

As the number of edges in a dense network will grow as \(O(N^2)\), you will likely
find that as sample numbers grow creating these visualisations becomes prohibitive in
terms of both memory and CPU time required. To get around this, you can first sparisfy your
distance matrix before computing the MST. The lineage mode does exactly this: keeping
only a specified number of nearest neighbours for each sample.

Therefore, there are two steps to this process:

	Fit a lineage model to your data, using a high rank.

	Use poppunk_mst to make the MST from the sparse matrix saved by this mode.

As an example, two commands might be:

poppunk --fit-model lineage --ref-db listeria_all --ranks 50 --threads 4 --output sparse_mst

poppunk_visualise --ref-db listeria --tree both --microreact \
--rank-fit sparse_mst/sparse_mst_rank50_fit.npz --output sparse_mst_viz --threads 4

Ideally you should pick a rank which is large enough to join all of the components together.
If you don’t, components will be artificially connected by nodes with the largest degree, at the
largest included distance. Look for components to be one:

Network for rank 100
Network summary:
 Components 1
 Density 0.3252
 Transitivity 0.5740
 Score 0.3873

This will produce a <name>_rank100_fit.npz file, which is the sparse matrix to load. You will
also need your dense distances, but only the .pkl file is loaded to label the samples.
--previous-clustering is optional, and points to any .csv output from PopPUNK.
Note that the clusters produced from your high rank fit are likely to be meaningless, so use clusters
from a fit you are happy with. These are combined to give samples coloured by strain in the first plot:

	
[image: _images/mst_medium_clusters.png]

MST from a sparse matrix, coloured by strain

	
[image: _images/mst_medium_stress.png]

MST from a sparse matrix, coloured by betweenness

With big data

For very large datasets, producing a dense distance matrix at all may become totally
infeasible. Fortunately, it is possible to add to the sparse matrix iteratively by making
a lineage fit to a subset of your data, and then repeatedly adding in blocks with poppunk_assign
and --update-db:

poppunk --create-db --r-files qfile1.txt --output listeria_1
poppunk --fit-model lineage --ref-db listeria_1 --ranks 500 --threads 16
poppunk_assign --ref-db listeria_1 --q-files qfile2.txt --output listeria_1 --threads 16 --update-db
poppunk_assign --ref-db listeria_1 --q-files qfile3.txt --output listeria_1 --threads 16 --update-db

This will calculate all vs. all distances, but many of them will be discarded at each stage,
controlling the total memory required. The manner in which the sparse matrix grows is predictable:
\(Nk + 2NQ + Q^2 - Q\) distances are saved at each step, where \(N\)
is the number of references, \(Q\) is the number of requires queries and \(k\) is the rank.

If you split the samples into roughly equally sized blocks of \(Q\) samples,
the \(Q^2\) terms dominate. So you can pick \(Q\) such that \(\sim3Q^2\)
distances can be stored (each distance uses four bytes). The final distance matrix
will contain \(Nk\) distances, so you can choose a rank such that this will fit in
memory.

You may then follow the process described above to use poppunk_visualise to generate an MST
from your .npz file after updating the database multiple times.

Using GPU acceleration for the graph

As an extra optimisation, you may add --gpu-graph to use cuGraph [https://docs.rapids.ai/api]
from the RAPIDS library to calculate the MST on a GPU:

poppunk_visualise --ref-db listeria --tree both --rank-fit sparse_mst/sparse_mst_rank50_fit.npz\
--microreact --output sparse_mst_viz --threads 4 --gpu-graph

Graph-tools OpenMP parallelisation enabled: with 1 threads
Loading distances into graph
Calculating MST (GPU part)
Label prop iterations: 6
Label prop iterations: 5
Label prop iterations: 5
Label prop iterations: 4
Label prop iterations: 2
Iterations: 5
12453,65,126,13,283,660
Calculating MST (CPU part)
Completed calculation of minimum-spanning tree
Generating output
Drawing MST

This uses cuDF [https://docs.rapids.ai/api/cudf/stable/] to load the sparse matrix
(network edges) into the device, and cuGraph to do the MST calculation. At the end, this
is converted back into graph-tool format for drawing and output. Note that this process
incurs some overhead, so will likely only be faster for very large graphs where calculating
the MST on a CPU is slow.

To turn off the graph layout and drawing for massive networks, you can use --no-plot.

Important

The RAPIDS packages are not included in the default PopPUNK installation, as they
are in non-standard conda channels. To install these packages, see the guide [https://rapids.ai/start.html#get-rapids].

Subclustering with PopPIPE

Overview

You can run PopPIPE [https://github.com/johnlees/PopPIPE] on your PopPUNK output,
which will run subclustering and visualisation within your strains. The pipeline
consists of the following steps:

	Split files into their strains.

	Calculate core and accessory distances within each strain.

	Use the core distances to make a neighbour-joining tree.

	(lineage_clust mode) Generate clusters from core distances with lineage clustering in PopPUNK.

	Use ska [https://github.com/simonrharris/SKA] to generate within-strain alignments.

	Use IQ-TREE [http://www.iqtree.org/] to generate an ML phylogeny for each strain using this alignment,
and the NJ tree as a starting point.

	Use fastbaps [https://github.com/gtonkinhill/fastbaps] to generate subclusters which are partitions of the phylogeny.

	Create an overall visualisation with both core and accessory distances, as in PopPUNK.
The final tree consists of refining the NJ tree by grafting the maximum likelihood trees for subclusters to their matching nodes.

An example DAG for the steps (excluding ska index, for which there is one per sample):

[image: Example DAG for a PopPIPE run]

Installation

PopPIPE is a snakemake [https://snakemake.readthedocs.io/en/stable/] pipeline, which depends
upon snakemake and pandas:

conda install snakemake pandas

Other dependencies will be automatically installed by conda the first time
you run the pipeline. You can also install them yourself and omit the -use-conda
directive to snakemake:

conda env create -n poppipe --file=environment.yml

Then clone the repository:

git clone git@github.com:johnlees/PopPIPE.git

Usage

	Modify config.yml as appropriate.

	Run snakemake --cores <n_cores> --use-conda.

On a cluster or the cloud, you can use snakemake’s built-in --cluster argument:

snakemake --cluster qsub -j 16 --use-conda

See the snakemake docs [https://snakemake.readthedocs.io/en/stable/executing/cluster-cloud.html)]
for more information on your cluster/cloud provider.

Alternative runs

For quick and dirty clustering and phylogenies using core distances from
pp-sketchlib [https://github.com/johnlees/pp-sketchlib] alone, run:

snakemake --cores <n_cores> --use-conda lineage_clust

To create a visualisation on microreact [https://microreact.org/]:

snakemake –use-conda make_microreact

Config file

PopPIPE configuration

	script_location: The scripts/ directory, if not running from the root of this repository

	poppunk_db: The PopPUNK HDF5 database file, without the .h5 suffix.

	poppunk_clusters: The PopPUNK cluster CSV file, usually poppunk_db/poppunk_db_clusters.csv.

	poppunk_rfile: The --rfile used with PopPUNK, which lists sample names and files, one per line, tab separated.

	min_cluster_size: The minimum size of a cluster to run the analysis on (recommended at least 6).

IQ-TREE configuration

	enabled: Set to false to turn off ML tree generation, and use the NJ tree throughout.

	mode: Set to full to run with the specified model, set to fast to run using --fast (like fasttree).

	model: A string for the -m parameter describing the model. Adding +ASC is recommended.

fastbaps configuration

	levels: Number of levels of recursive subclustering.

	script: Location of the run_fastbaps script. Find by running system.file("run_fastbaps", package = "fastbaps") in R.

Updating a run

Running snakemake from the same directory will keep outputs where possible,
so new additions will automatically be included.

TODO: How to do this when adding new isolates with poppunk_assign

Using GPUs

PopPUNK can use GPU acceleration of sketching (only when using sequence reads), distance
calculation, network construction and some aspects of visualisation. Installing and
configuring the required packages necessitates some extra steps, outlined below.

Installing GPU packages

To use GPU acceleration, PopPUNK uses cupy, numba and the cudatoolkit
packages from RAPIDS. Both cupy and numba can be installed as standard packages
using conda. The cudatoolkit packages need to be matched to your CUDA version.
The command nvidia-smi can be used to find the supported CUDA version [https://stackoverflow.com/questions/53422407/different-cuda-versions-shown-by-nvcc-and-nvidia-smi].
Installation of the cudatoolkit with conda (or the faster conda alternative,
mamba [https://mamba.readthedocs.io/en/latest/installation.html]) should be guided
by the RAPIDS guide [https://rapids.ai/start.html#get-rapids]. This information
will enable the installation of PopPUNK into a clean conda environment with a command
such as (modify the CUDA_VERSION variable as appropriate):

export CUDA_VERSION=11.3
conda create -n poppunk_gpu -c rapidsai -c nvidia -c conda-forge \
-c bioconda -c defaults rapids>=22.12 python=3.8 cudatoolkit=$CUDA_VERSION \
pp-sketchlib>=2.0.1 poppunk>=2.6.0 networkx cupy numba
conda activate poppunk_gpu

The version of pp-sketchlib on conda only supports some GPUs. A more general approach
is to install from source. This requires the installation of extra packages needed for
building packages from source. Additionally, it is sometimes necessary to install
versions of the CUDA compiler (cuda-nvcc) and runtime API (cuda-cudart)
that match the CUDA version. Although conda can be used, creating such a complex
environment can be slow, and therefore we recommend mamba as a faster alternative:

export CUDA_VERSION=11.3
mamba create -n poppunk_gpu -c rapidsai -c nvidia -c conda-forge \
-c bioconda -c defaults rapids=22.12 python>=3.8 cudatoolkit=$CUDA_VERSION \
cuda-nvcc=$CUDA_VERSION cuda-cudart=$CUDA_VERSION networkx cupy numba cmake \
pybind11 highfive Eigen openblas libgomp libgfortran-ng poppunk>=2.6.0

Note

On OSX replace libgomp libgfortan-ng with llvm-openmp gfortran_impl_osx-64,
and remove libgomp from environment.yml.

Clone the sketchlib repository:

git clone https://github.com/bacpop/pp-sketchlib.git
cd pp-sketchlib

To correctly build pp-sketchlib, the GPU architecture needs to be correctly
specified. The nvidia-smi command can be used to display the GPUs available
to you. This can be used to identify the corresponding compute version needed for
compilation (typically of the form sm_*) using this guide [https://arnon.dk/matching-sm-architectures-arch-and-gencode-for-various-nvidia-cards/]
or the more limited table below. Edit the CMakeLists.txt if necessary to change
the compute version to that used by your GPU. See the CMAKE_CUDA_COMPILER_VERSION
section [https://github.com/johnlees/pp-sketchlib/blob/master/CMakeLists.txt#L65-L68].

GPU compute versions

	GPU

	Compute version

	20xx series

	75

	30xx series

	86

	40xx series

	89

	V100

	70

	A100

	80

	A5000

	86

	H100

	90

The conda-installed version of pp-sketchlib can then be removed with the
command:

conda remove --force pp-sketchlib

Then run:

python setup.py install

You should see a message that the CUDA compiler is found, in which case the compilation
and installation of sketchlib will include GPU components:

-- Looking for a CUDA compiler
-- Looking for a CUDA compiler - /usr/local/cuda-11.1/bin/nvcc
-- CUDA found, compiling both GPU and CPU code
-- The CUDA compiler identification is NVIDIA 11.1.105
-- Detecting CUDA compiler ABI info
-- Detecting CUDA compiler ABI info - done
-- Check for working CUDA compiler: /usr/local/cuda-11.1/bin/nvcc - skipped
-- Detecting CUDA compile features
-- Detecting CUDA compile features - done

You can confirm that your custom installation of sketchlib is being used by checking
the location of sketchlib library reported by popppunk points to your python
site-packages, rather than the conda version.

Selecting a GPU

A single GPU will be selected on systems where multiple devices are available. For
sketching and distance calculations, this can be specified by the --deviceid flag.
Alternatively, all GPU-enabled functions will used device 0 by default. Any GPU can
be set to device 0 using the system CUDA_VISIBLE_DEVICES variable, which can be set
before running PopPUNK; e.g. to use GPU device 1:

export CUDA_VISIBLE_DEVICES=1

Using a GPU

By default, PopPUNK will use not use GPUs. To use them, you will need to add
the flag --gpu-sketch (when constructing or querying a database using reads),
--gpu-dist (when constructing or querying a database from assemblies or reads),
or --gpu-graph (when querying or visualising a database, or fitting a model).

Troubleshooting

This page deals with common issues in running the analysis. For issues with
installing or running the software please raise an issue on github.

Most/all of my samples merge when I run a query

If you see a gigantic merge when running poppunk_assign, for example:

Clusters 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 have merged into 1_2_3_4_5_6_7_8_9_10_11_12_13_14_15_16

This might be caused by:

	A single/a few ‘bad’ genome(s) with artificial zero/close-to-zero distances to many other samples, which links much of the network together.

	A boundary which is actually a bit lax, and when more isolates are added,
they have distances just below the boundary between a few clusters,
and there are enough of these to link more and more clusters together.

The first issue should be easy to fix with one of the following methods:

	Use --run-qc (see Data quality control (--qc-db)) with one or more of:

	--max-pi-dist and/or --max-a-dist to remove outlier distances.

	--max-zero-dist which sets the maximum proportion of zeros to other samples. Poor quality genomes often end up with zero distances to many samples, linking them together.

	--max-merge which sets the maximum number of clusters a single query can cause to merge.

	--betweenness which will print all queries in order which have high stress in the network, and are likely causing merges.

	Use --serial to run samples through one-by-one. This is a little less
efficient than fully batched querying, but much faster than running independent
jobs. Note, lineage models and updating the database are not supported with
this mode.

The second issue above is potentially more insidiuous, and may require a refit to all the
data to obtain a tighter boundary. You can (mostly) keep old cluster IDs via
the use of --external-clustering if you do this.
Alternatively, you can add the --serial command to type samples one at a time
as above.

See issue 194 [https://github.com/bacpop/PopPUNK/issues/194] for more discussion.

Memory/run-time issues

Here are some tips based on experiences analysing larger datasets:

	Add --threads – they are used fairly efficiently throughout.

	Consider the --gpu-sketch and --gpu-dists options is applicable,
and a GPU is available.

	In --refine-model set --pos-shift 0 to avoid creating huge networks
with close to \(N^2\) edges. Mixture models normally need to be pruned.

	In --refine-model you may add the --no-local option to skip that step
and decrease run-time, though gains are likely marginal.

	Use --rapid-nj, if producing microreact output.

Another option for scaling is to run --create-db with a smaller initial set (not
using the --full-db command), then use --assign-query to add to this.

Known bugs

Calculating query-query distances when unnecessary

A bug in v2.4.0 only, (fixed in v2.5.0 and not in previous versions).

You will always see Found novel query clusters. Calculating distances between them.
when running poppunk_assign with more than one input sample. This should only
happen when unassigned isolates/novel clusters are found. Our check on this condition
became invalid.

Additionally, this may have affected typing when query-query links were present,
this appeared as invalid merges in some tests. If you used this, you may wish to
re-run with v2.5.0 or higher.

Older HDBSCAN models fail to load

tl;dr if you see an error ModuleNotFoundError: No module named 'sklearn.neighbors._dist_metrics'
you probably need to downgrade sklearn to v0.24.

The change in scikit-learn’s API in v1.0.0 and above mean that HDBSCAN models
fitted with `sklearn <=v0.24` will give an error when loaded. If you run into this,
the solution is one of:
- Downgrade sklearn to v0.24.
- Run model refinement to turn your model into a boundary model instead (this will
change clusters).
- Refit your model in an environment with `sklearn >=v1.0.

If this is a common problem let us know, as we could write a script to ‘upgrade’
HDBSCAN models.
See issue [#213](https://github.com/bacpop/PopPUNK/issues/213) for more details.

When I look at my clusters on a tree, they make no sense

This is a bug caused by alphabetic sorting of labels in PopPUNK >=v2.0.0
with pp-sketchlib <v1.5.1. There are three ways to fix this:

	Upgrade to PopPUNK >=v2.2 and pp-sketchlib >=v1.5.1 (preferred).

	Run scripts/poppunk_pickle_fix.py on your .dists.pkl file and re-run
model fits.

	Create the database with poppunk_sketch --sketch and
poppunk_sketch --query directly, rather than PopPUNK --create-db.

I have updated PopPUNK, and my clusters still seemed scrambled

This is possible using query assignment with --update-db, or in some cases
with --gpu-dists. Please update to PopPUNK >=v2.4.0
with pp-sketchlib >=v1.7.0

Calculating distances using 0 thread(s)

This will lead to an error later on in execution. This is due to a version
mismatch between PopPUNK and pp-sketchlib. Installation of both packages
via conda should keep the versions compatible, but there are ways they can get out of sync.

The solution is as above: upgrade to PopPUNK >=v2.2 and pp-sketchlib >=v1.5.1.

Error/warning messages

Row name mismatch

PopPUNK may throw:

RuntimeError: Row name mismatch. Old: 6999_2#17.fa,6259_5#6.fa
New: 6952_7#16.fa,6259_5#6.fa

This is an error where the mash output order does not match the order in stored
databases (.pkl). Most likely, the input files are from different runs, possibly
due to using --overwrite. Run again, giving each step its own output directory.

Samples are missing from the final network

When running --assign-query an error such as:

WARNING: Samples 7553_5#54.fa,6999_5#1.fa are missing from the final network

Means that samples present in --distances and or --ref-db are not present
in the loaded network. This should be considered an error as it will likely lead to other
errors and warnings. Make sure the provided network is the one created by applying
the --model-dir to --distances, and that the same output directory has
not been used and overwriten by different steps or inputs.

Old cluster split across multiple new clusters

When running --assign-query, after distances have been calculated and queries are being
assigned warnings such as:

WARNING: Old cluster 1 split across multiple new clusters

Mean that a single cluster in the original clustering is now split into more than one
cluster. This means something has gone wrong, as the addition of new queries should only
be able to merge existing clusters, not cause them to split.

Most likely, the --previous-clustering directory is inconsistent with the --ref-db
and/or --model-dir. Make sure the clusters are those created from the network being
used to assign new queries.

If you want to change cluster names or assign queries to your own cluster definitions
you can use the --external-clustering argument instead.

Scripts

Brief documentation on the helper scripts included in the package in the /scripts directory.
To use these scripts you will need to have a clone of the git repository, or they should also be
installed with the prefix ‘poppunk’ (e.g to run extract_distances.py, run the command
poppunk_extract_distances.py).

Easy run mode

Previous versions of the software had an --easy-run mode which would run a pipeline of:

	--create-db to sketch genomes

	--fit-model --dbscan to fit a flexible model

	--refine-model to improve this model

This is now available as poppunk_easy_run.py which will chain calls to poppunk
and poppunk_visualise to replicate this functionality.

Iterative PopPUNK

You can combine the output from multiple to produce further analysis. For an easy
way to create multiple clusters, try the --multi-boundary option (Running with multiple boundary positions).

The script to analyse these is poppunk_iterate.py. Basic use is to provide the
output directory as --db, but run --help for other common options. This relies on
finding files named <db>/<db>_boundary<n>_clusters.csv, where <n> is the boundary
iteration number (continuous integers increasing from zero). Clusters must contain at least
two samples.

This script will do the following:

	Starting from the most specific clusters (nearest the origin), it will iteratively
add new clusters which are either:

	totally new clusters

	subsets of existing clusters

	existing clusters are subsets of the new cluster.

	Remove duplicate clusters.

	Calculate average core distance within this cluster set.

	Create a tree by nesting smaller clusters within larger clusters they are subsets of.

	Output the combined clusters, average core distances, and tree.

	Cut this tree to pick a set of clusters under a similarity given by --cutoff.

Adding weights to the network

Converts binary within-cluster edge weights to the Euclidean core-accessory distance.
This is equivalent to running with --graph-weights:

poppunk_add_weights <name>_graph.gt <name>.dists <output>

Default output is a graph-tool file. Add --graphml to save as .graphml instead.

Writing the pairwise distances to an output file

By default PopPUNK does not write the calculated \(\pi_n\) and \(a\) distances out, as this
contains \(\frac{1}{2}n*(n-1)\) rows, which gives a multi Gb file for large datasets.

However, if needed, there is a script available to extract these distances as a text file:

poppunk_extract_distances.py --distances strain_db.dists --output strain_db.dists.out

Writing network components to an output file

Visualisation of large networks with cytoscape may become challenging. It is possible to extract
individual components/clusters for visualisation as follows:

poppunk_extract_components.py strain_db_graph.gpickle strain_db

Calculating Rand indices

This script allows the clusters formed by different runs/fits/modes of PopPUNK to be compared to each
other. 0 indicates the clusterings are totally discordant, and 1 indicates they are identical.

Run:

poppunk_calculate_rand_indices.py --input poppunk_gmm_clusters.csv,poppunk_dbscan_cluster.csv

The script will calculate the Rand index [https://en.wikipedia.org/wiki/Rand_index#Rand_index]
and the adjusted Rand index [https://en.wikipedia.org/wiki/Rand_index#Adjusted_Rand_index]
between all pairs of files provided (comma separated) to the --input argument.
These will be written to the file rand.out, which can be changed using --output.

The --subset argument can be used to restrict comparisons to include only specific samples
listed in the provided file.

Calculating silhouette indices

This script can be used to find how well the clusters project into core-accessory space by
calculating the silhoutte index [https://en.wikipedia.org/wiki/Silhouette_(clustering)],
which measures how close samples are to others in their own cluster compared to samples from other
clusters. The silhoutte index is calculated for every sample and takes a value between -1 (poorly matched)
to +1 (well matched). The script reports the average of these indices across all samples, using Euclidean
distances between the (normalised) core and accessory divergences calculated by PopPUNK.

To run:

poppunk_calculate_silhouette.py --distances strain_db.dists --cluster-csv strain_db_clusters.csv

The following additional options are available for use with external clusterings (e.g. from hierBAPS):

	--cluster-col the (1-indexed) column index containing the cluster assignment

	--id-col the (1-indexed) column index containing the sample names

	--sub a string to remove from sample names to match them to those in --distances

Distributing PopPUNK models

This script automatically generates compressed and uncompressed directories containing all files
required for distribution and reuse of PopPUNK model fits.

To run:

python poppunk_distribute_fit.py --dbdir database_directory --fitdir model_fit_directory --outpref output_prefix

The following additional arguments are available:

	--lineage specify only if lineage fit was used.

	--no-compress will not generate tar.bz2 archives

--dbdir and --fitdir can be the same directory, however both must still be specified.
The output of this script is a directory and a compressed tar.bz2 archive for each of the
full dataset and representative genomes dataset.

Iterative PopPUNK

Running with multiple boundary positions

To create clusters at equally spaced positions across the refinement range,
add the --multi-boundary <n> argument, with the number of positions specified by <n>.
This will create up to <n> sets of clusters, with boundaries equally spaced between
the origin and the refined boundary position.

Trivial cluster sets, where every sample is in its own cluster, will be excluded,
so the final number of clusters may be less than <n>. The script to analyse these is
poppunk_iterate.py. Basic usage is to provide the output directory as --db,
but run --help for other common options. This replies on finding files
named <db>/<db>_boundary<n>_clusters.csv, where <n> is the boundary iteration number
(continuous integers increasing from zero). Clusters must contain at least two samples.

The poppunk_iterate.py script performs the following steps:

	Starting from the most specific clusters (nearest the origin), it will iteratively add new clusters which are either:

	Total new clusters

	Subsets of existing clusters

	Existing clusters are subset of the new cluster.

	Remove duplicate clusters.

	Calculate average core distance within this cluster set.

	Create a tree by nesting smaller clusters within larger clusters whey are subsets of.

	Output the combined clusters, average core distances, and tree.

	Cut this tree to pick a set of clusters under a similarity given by a --cutoff.

Step-by-Step Tutorial

Step 1: Sketching (–create-db)

First, use poppunk --create-db to sketch input data and calculate distances between samples.
For the details, refer to Sketching (--create-db). To run this, using the following command:

poppunk --create-db --r-files rlist.txt --output <database> --threads 8

Step 2: Initial model fitting (–fit-model)

In iterative-PopPUNK, a universal model recommended for fitting the initial model is GMM with 2 or 3 components (K=2 or K=3),
because more datasets can be analysed using this setting (DBSCAN fits sometimes fail to coverage).
The details for model fitting can be found in Fitting new models (--fit-model). To run this, using the following command:

poppunk --fit-model bgmm --K 2 --ref-db <database> --output <database> --threads 16

Step 3: Multi-level clustering by moving decision boundary iteratively (–fit-model refine –multi-boundary)

After fitting the initial model with GMM (with 2 or 3 components), refine it by moving the decision boundary
to multiple positions between the origin and the combined decision boundary using the --multi-boundary option.
To expand within-strain component, use --neg-shift. Details can be found in Fitting new models (--fit-model) (the refine section).
To run this, use the following command:

poppunk --fit-model refine --multi-boundary 30 --ref-db <database> --output <database> --threads 16

Step 4: Choosing clusters under given similarity cutoffs (poppunk_iterate.py)

With <n> sets of clusters created in Step 3, poppunk_iterate.py is used to assemble a hierarchical tree
of iterative-PopPUNK clusters, while also calculating the average core distance within each cluster set. To run this step,
use the following command:

poppunk_iterate.py --db <database> --cutoff 0.2 --output <prefix> --cpus 16

Outputs:

	<prefix>_iterate.tree.nwk: this is the hierarchical tree of iterative-PopPUNK clusters.

	<prefix>_iterate.clusters.csv: this file contains all cluster sets from <n> positions, along with their corresponding average core distances.

	<prefix>_iterative.cutoff_clusters.csv: this file contains a single set of clusters that meets a specified similarity cutoff.

Note

We recommend using same name for <database> as in steps 1-3 (--ref-db and --output) to save the outputs from each step in a same folder

Examples

The following example demonstrate how to use iterative-PopPUNK with 500 E.coli representative genomes from Horesh et al. 2021 [https://doi.org/10.1099/mgen.0.000499].
You can download the genomes at https://doi.org/10.6084/m9.figshare.13270073.

Step 1:

paste <(ls *fa) <(ls *fa) > rlist.txt
poppunk --create-db --r-files rlist.txt --output ecoli --threads 16

This will create a PopPUNK database named “ecoli” by sketching the input genomes using 16 threads.
The program will calculate random match chances using Monte Carlo and calculate distances using 16 threads.
Once complete, the sketches will be written to a local file.

Step 2

Next, fit a Bayesian Gaussian Mixture Model (bgmm) to reference database using the following commands:

poppunk --fit-model bgmm --K 2 --ref-db ecoli --output ecoli --threads 16

This will fit the bgmm model to the ecoli database, assign distances with the model, and summarize the fit.
The output will include the scaled component means and network summary.

Step 3

After fitting the bgmm model, refine the model using the following commands:

poppunk --fit-model refine --ref-db ecoli --output ecoli --multi-boundary 30 --threads 16

This will load the previous bgmm model, construct an initial model-based network, and optimize the score globally.
The program will then create multiple boundary fits and summarize the network. The output will include the components,
density, transitivity, mean betweenness, weighted-mean betweenness, score, score with betweenness and score with weighted-betweenness.

Step 4

Finally, run poppunk_iterate.py with the following command to iterate over the PopPUNK analysis:

poppunk_iterate.py --db ecoli --cpus 16 --cutoff 0.2 --output 0.2_ecoli

This will run iteraive-PopPUNK with a cutoff 0.2 and output the results to files with prefix 0.2_ecoli.

Common questions

1. How can I use Iterative-PopPUNK to achieve sublineage clustering from a large outbreak dataset?

To demonstrate how to achieve multi-level clustering from a large outbreak setting using Iterative-PopPUNK,
we will use another example dataset consisting of 2,640 pathogenic Vibrio parahaemolyticus genomes from Yang et al. 2022 [https://doi.org/10.1038/s41564-022-01182-0].

Step 1: Creating a PopPUNK database

First, we need to create a reference database and fit a PopPUNK model using the following commands:

paste <(ls *fa) <(ls *fa) > rlist.txt
poppunk --create-db --r-files rlist.txt --output VP --threads 16
poppunk --fit-model bgmm --K 2 --ref-db VP --output VP --threads 16
poppunk --fit-model refine --ref-db VP --output VP --multi-boundary 30 --threads 16 --neg-shift -1
poppunk_iterate.py --db VP --cpus 16 --cutoff 0.5 --output 0.5_VP

After running Step 1, iterative-PopPUNK produces a result file 0.5_iterative.cutoff_clusters.csv,
which gives 9 PopPUNK clusters exactly corresponding to 9 clonal groups described in Yang et al. 2022.

Note

For closely related genomes (e.g. genomes within clonal group), we need to increase the sketch size for more precise distance calculation. In this example, we increase the sketching size to 100000. For more information, please refer to sketching section for details

Step 2: Sublineage clustering for clonal groups

Next, we extract the clonal groups estimated by Iterative-PoPUNK in Step 1 and run Iterative-PopPUNK again for sublineage clustering.
For example, we use the two largest clonal groups estimated in Step 1 for downstream analysis.

Sublineage clustering for clonal group CG3:

poppunk --create-db --r-files cg3_rlist.txt --output VP_cg3 --threads 16 --sketch-size 100000
poppunk --fit-model bgmm --K 2 --ref-db VP_cg3 --output VP_cg3 --threads 16
poppunk --fit-model refine --ref-db VP_cg3 --output VP_cg3 --multi-boundary 30 --threads 16
poppunk_iterate.py --db VP --cpus 16 --cutoff 0.4 --output 0.4_VP_cg3

Sublineage clustering for clonal group CG189:

poppunk --create-db --r-files cg189_rlist.txt --output VP_cg189 --threads 16 --sketch-size 100000
poppunk --fit-model bgmm --K 2 --ref-db VP_cg189 --output VP_cg189 --threads 16
poppunk --fit-model refine --ref-db VP_cg189 --output VP_cg189 --multi-boundary 30 --threads 16
poppunk_iterate.py --db VP --cpus 16 --cutoff 0.2 --output 0.2_VP_cg189

Results:

[image: Iterative-PopPUNK multi-level clustering results from Clonal Groups to Outbreak level]
The results demonstrate the effectiveness of using iterative-PopPUNK for sublineage clustering in large outbreak datasets.
For example, in clonal group CG3, we extracted 274 outbreak groups (after removal of non-pathogenic isolates),
while iterative-PopPUNK identified 80 clusters with a 40% MACD cutoff. The concordance of iterative-PopPUNK clustering
with the identified outbreak groups was 60% (48/80), indicating that iterative-PopPUNK is able to achieve a finer resolution
than clonal level. Moreover, the isolate clustering concordance (i.e. isolates assigned to a same group by both methods) was 90% (1596/1768),
indicating high agreement between iterative-PopPUNK and outbreak groups at the isolate level. For clonal group CG189,
iterative-PopPUNK identified 25 clusters with a 20% MACD cutoff, which showed a cluster concordance of 80% (20/25) with outbreak groups,
and an isolate clustering concordance of 95% (259/273). It is worth noting that different genetic distance measurements can
account for inconsistencies between iterative-PopPUNK clusters and outbreak groups.

2. How can I determine when I should add “–neg-shift” or “–pos-shift” ?

Iterative-PopPUNK allows for the use of “–neg-shift” and “–pos-shift” parameters to refine the initial model fit
and estimate more clusters in either a higher or lower genetic level. These parameters adjust the decision boundary ranges for cluster estimation.

By default, adding “–neg-shift” with a value below zero moves the initial decision boundary line towards a higher genetic level,
while a positive value for “–pos-shift” moves the line towards the origin. The value chosen for these parameters should align with
the research interests of the user.

For instance, consider the E. coli dataset. Without adding “–neg-shift”, iterative-PopPUNK may fail to find phylogroups.
Figure 1 shows the distribution plot for this dataset with default settings, while Figure 2 shows the same plot after adding
a value of -0.25 for “–neg-shift”:

	
[image: _images/ecoli_refined_fit.png]

Figure 1: refine fit with default settings

	
[image: _images/ecoli_refined_fit_with_neg.png]

Figure 2: refine fit with default settings after adding -0.25 neg-shift

In summary, users should determine whether to add “–neg-shift” or “–pos-shift” based on their research interests, and adjust the value accordingly.

3. why does the number of clusters increase with larger cutoff values?

In iterative PopPUNK, the choice of cutoff value has a significant impact on the resulting number and composition of clusters. In general,
increasing the cutoff value leads to fewer and larger clusters, while decreasing the cutoff value leads to more and smaller clusters.
However, in some cases, increasing the cutoff value can paradoxically lead to an increase in the number of clusters, which may seem counterintuitive.

To understand why this happens, we need to look at the role of average core distance (ACD) in cluster formation.
ACD is a measure of the average genetic distance between all pairs of isolates within a cluster. When the ACD is low,
it means that the isolates within the cluster are genetically similar to each other, while a high ACD indicates that there are
significant genetic differences between the isolates.

In a large dataset, the ACD of one cluster’s parent cluster is greatly affected by small clusters or singleton isolates.
This is because the ACD of a parent cluster is calculated as the average ACD of all the clusters it contains. As a result,
if a parent cluster contains one or more small clusters with extreme high ACD values, its own ACD value will be inflated,
which may cause it to be split into multiple singletons at higher cutoff values.

Consider the following simplified iterative-PopPUNK tree:

[image: simplified iterative-PopPUNK tree]
In Figure A, a very small cutoff value results in no nodes being selected, leaving a set of 8 clusters or singletons.
When the cutoff is increased to 0.5 in Figure B, only one cluster, Cluster2, is selected. However, when a higher cutoff value of 0.95 is adopted,
Cluster3 is selected, and the remaining six isolates are left as singletons, resulting in a total of 7 clusters.

To address this issue, you can check the “<prefix>.clusters.csv” file to identify small clusters with extreme high ACD values.
If present, check the PopPUNK distribution plot (“<prefix>_distanceDistribution.png”) to determine if there are any distanced components.
You can remove low-quality or distanced samples from your dataset using the “–qc-db” option (please refer to Data quality control (--qc-db)).

In the examples given above, removing the two isolates from Cluster3 would help to solve the problem and lead to a more accurate clustering result.

By carefully selecting the cutoff value and performing quality control on the input data, you can obtain robust and
biologically meaningful clusterings with iterative PopPUNK.

Citing PopPUNK

If you use PopPUNK, PopPIPE or pp-sketchlib in a scientific paper, we would appreciate
a citation. As a minimum, please cite the following paper(s):

Lees JA, Harris SR, Tonkin-Hill G, Gladstone RA, Lo SW, Weiser JN, Corander J, Bentley SD, Croucher NJ. Fast and flexible
bacterial genomic epidemiology with PopPUNK. Genome Research 29:1-13 (2019).
doi:10.1101/gr.241455.118 [https://dx.doi.org/10.1101/gr.241455.118]

Generating citations and methods

You can add --citation to your PopPUNK command to generate a full list of papers
to cite. This will also produce a basic methods paragraph for you to edit and include. You
can do this after running poppunk_assign or poppunk --fit-model:

poppunk --citation --fit-model bgmm --ref-db example_db --K 4

gives:

We built a database of 28 isolates using pp-sketchlib version 1.7.0 (doi:10.5281/zenodo.4531418)
with sketch version 88ee3ff83ba294c928505f991e20078691ed090e, k-mer lengths 13-28, a sketch size of 9984 and dense seeds [6-8].
We assigned variable-length-k-mer clusters (VLKCs) using PopPUNK version 2.4.0
(doi:10.1101/gr.241455.118) by fitting a BGMM with 4 components [1-5].

or:

poppunk_assign --citation --query some_queries.txt --db example_db

gives:

We queried a database of 28 isolates and their pre-assigned variable-length-k-mer
clusters (VLKCs) using pp-sketchlib version 1.7.0 (doi:10.5281/zenodo.4531418) with
sketch version 88ee3ff83ba294c928505f991e20078691ed090e, k-mer lengths 13-28,
a sketch size of 9984 and dense seeds [6-8]. We assigned the VLKCs using PopPUNK
version 2.4.0 (doi:10.1101/gr.241455.118) [1-5].

If your journal requires versions for all software packages, you may find running
conda list helpful. Running poppunk_info (Viewing information about a database) on your .h5
files will give useful information too.

Reference documentation

Documentation for module functions (for developers)

assign.py

poppunk_assign main function

	
PopPUNK.assign.assign_query(dbFuncs, ref_db, q_files, output, qc_dict, update_db, write_references, distances, serial, threads, overwrite, plot_fit, graph_weights, model_dir, strand_preserved, previous_clustering, external_clustering, core, accessory, gpu_sketch, gpu_dist, gpu_graph, deviceid, save_partial_query_graph)

	Code for assign query mode for CLI

	
PopPUNK.assign.assign_query_hdf5(dbFuncs, ref_db, qNames, output, qc_dict, update_db, write_references, distances, serial, threads, overwrite, plot_fit, graph_weights, model_dir, strand_preserved, previous_clustering, external_clustering, core, accessory, gpu_dist, gpu_graph, save_partial_query_graph)

	Code for assign query mode taking hdf5 as input. Written as a separate function so it can be called
by web APIs

	
PopPUNK.assign.main()

	Main function. Parses cmd line args and runs in the specified mode.

bgmm.py

Functions used to fit the mixture model to a database. Access using
BGMMFit.

BGMM using sklearn

	
PopPUNK.bgmm.findWithinLabel(means, assignments, rank=0)

	Identify within-strain links

Finds the component with mean closest to the origin and also akes sure
some samples are assigned to it (in the case of small weighted
components with a Dirichlet prior some components are unused)

	Args:
	
	means (numpy.array)
	K x 2 array of mixture component means

	assignments (numpy.array)
	Sample cluster assignments

	rank (int)
	Which label to find, ordered by distance from origin. 0-indexed.

(default = 0)

	Returns:
	
	within_label (int)
	The cluster label for the within-strain assignments

	
PopPUNK.bgmm.fit2dMultiGaussian(X, dpgmm_max_K=2)

	Main function to fit BGMM model, called from fit()

Fits the mixture model specified, saves model parameters to a file, and assigns the samples to
a component. Write fit summary stats to STDERR.

	Args:
	
	X (np.array)
	n x 2 array of core and accessory distances for n samples.
This should be subsampled to 100000 samples.

	dpgmm_max_K (int)
	Maximum number of components to use with the EM fit.
(default = 2)

	Returns:
	
	dpgmm (sklearn.mixture.BayesianGaussianMixture)
	Fitted bgmm model

	
PopPUNK.bgmm.log_likelihood(X, weights, means, covars, scale)

	modified sklearn GMM function predicting distribution membership

Returns the mixture LL for points X. Used by assign_samples() and
plot_contours()

	Args:
	
	X (numpy.array)
	n x 2 array of core and accessory distances for n samples

	weights (numpy.array)
	Component weights from fit2dMultiGaussian()

	means (numpy.array)
	Component means from fit2dMultiGaussian()

	covars (numpy.array)
	Component covariances from fit2dMultiGaussian()

	scale (numpy.array)
	Scaling of core and accessory distances from fit2dMultiGaussian()

	Returns:
	
	logprob (numpy.array)
	The log of the probabilities under the mixture model

	lpr (numpy.array)
	The components of the log probability from each mixture component

	
PopPUNK.bgmm.log_multivariate_normal_density(X, means, covars, min_covar=1e-07)

	Log likelihood of multivariate normal density distribution

Used to calculate per component Gaussian likelihood in
assign_samples()

	Args:
	
	X (numpy.array)
	n x 2 array of core and accessory distances for n samples

	means (numpy.array)
	Component means from fit2dMultiGaussian()

	covars (numpy.array)
	Component covariances from fit2dMultiGaussian()

	min_covar (float)
	Minimum covariance, added when Choleksy decomposition fails
due to too few observations (default = 1.e-7)

	Returns:
	
	log_prob (numpy.array)
	An n-vector with the log-likelihoods for each sample being in
this component

dbscan.py

Functions used to fit DBSCAN to a database. Access using
DBSCANFit.

DBSCAN using hdbscan

	
PopPUNK.dbscan.evaluate_dbscan_clusters(model)

	Evaluate whether fitted dbscan model contains non-overlapping clusters

	Args:
	
	model (DBSCANFit)
	Fitted model from fit()

	Returns:
	
	indistinct (bool)
	Boolean indicating whether putative within- and
between-strain clusters of points overlap

	
PopPUNK.dbscan.findBetweenLabel(assignments, within_cluster)

	Identify between-strain links from a DBSCAN model

Finds the component containing the largest number of between-strain
links, excluding the cluster identified as containing within-strain
links.

	Args:
	
	assignments (numpy.array)
	Sample cluster assignments

	within_cluster (int)
	Cluster ID assigned to within-strain assignments, from findWithinLabel()

	Returns:
	
	between_cluster (int)
	The cluster label for the between-strain assignments

	
PopPUNK.dbscan.fitDbScan(X, min_samples, min_cluster_size, cache_out)

	Function to fit DBSCAN model as an alternative to the Gaussian

Fits the DBSCAN model to the distances using hdbscan

	Args:
	
	X (np.array)
	n x 2 array of core and accessory distances for n samples

	min_samples (int)
	Parameter for DBSCAN clustering ‘conservativeness’

	min_cluster_size (int)
	Minimum number of points in a cluster for HDBSCAN

	cache_out (str)
	Prefix for DBSCAN cache used for refitting

	Returns:
	
	hdb (hdbscan.HDBSCAN)
	Fitted HDBSCAN to subsampled data

	labels (list)
	Cluster assignments of each sample

	n_clusters (int)
	Number of clusters used

mandrake.py

	
PopPUNK.mandrake.generate_embedding(seqLabels, accMat, perplexity, outPrefix, overwrite, kNN=50, maxIter=10000000, n_threads=1, use_gpu=False, device_id=0)

	Generate t-SNE projection using accessory distances

Writes a plot of t-SNE clustering of accessory distances (.dot)

	Args:
	
	seqLabels (list)
	Processed names of sequences being analysed.

	accMat (numpy.array)
	n x n array of accessory distances for n samples.

	perplexity (int)
	Perplexity parameter passed to t-SNE

	outPrefix (str)
	Prefix for all generated output files, which will be placed in
outPrefix subdirectory

	overwrite (bool)
	Overwrite existing output if present
(default = False)

	kNN (int)
	Number of neigbours to use with SCE (cannot be > n_samples)
(default = 50)

	maxIter (int)
	Number of iterations to run
(default = 1000000)

	n_threads (int)
	Number of CPU threads to use
(default = 1)

	use_gpu (bool)
	Whether to use GPU libraries

	device_id (int)
	Device ID of GPU to be used
(default = 0)

	Returns:
	
	mandrake_filename (str)
	Filename with .dot of embedding

models.py

Classes used for model fits

	
class PopPUNK.models.BGMMFit(outPrefix, max_samples=50000)

	Class for fits using the Gaussian mixture model. Inherits from ClusterFit.

Must first run either fit() or load() before calling
other functions

	Args:
	
	outPrefix (str)
	The output prefix used for reading/writing

	max_samples (int)
	The number of subsamples to fit the model to

(default = 100000)

	
assign(X, values=False, progress=True)

	Assign the clustering of new samples using assign_samples()

	Args:
	
	X (numpy.array)
	Core and accessory distances

	values (bool)
	Return the responsibilities of assignment rather than most likely cluster

	num_processes (int)
	Number of threads to use

	progress (bool)
	Show progress bar

[default = True]

	Returns:
	
	y (numpy.array)
	Cluster assignments or values by samples

	
fit(X, max_components)

	Extends fit()

Fits the BGMM and returns assignments by calling
fit2dMultiGaussian().

Fitted parameters are stored in the object.

	Args:
	
	X (numpy.array)
	The core and accessory distances to cluster. Must be set if
preprocess is set.

	max_components (int)
	Maximum number of mixture components to use.

	Returns:
	
	y (numpy.array)
	Cluster assignments of samples in X

	
load(fit_npz, fit_obj)

	Load the model from disk. Called from loadClusterFit()

	Args:
	
	fit_npz (dict)
	Fit npz opened with numpy.load()

	fit_obj (sklearn.mixture.BayesianGaussianMixture)
	The saved fit object

	
plot(X, y)

	Extends plot()

Write a summary of the fit, and plot the results using
PopPUNK.plot.plot_results() and PopPUNK.plot.plot_contours()

	Args:
	
	X (numpy.array)
	Core and accessory distances

	y (numpy.array)
	Cluster assignments from assign()

	
save()

	Save the model to disk, as an npz and pkl (using outPrefix).

	
class PopPUNK.models.ClusterFit(outPrefix, default_dtype=numpy.float32)

	Parent class for all models used to cluster distances

	Args:
	
	outPrefix (str)
	The output prefix used for reading/writing

	
copy(prefix)

	Copy the model to a new directory

	
fit(X=None)

	Initial steps for all fit functions.

Creates output directory. If preprocess is set then subsamples passed X

	Args:
	
	X (numpy.array)
	The core and accessory distances to cluster. Must be set if
preprocess is set.

(default = None)

	default_dtype (numpy dtype)
	Type to use if no X provided

	
no_scale()

	Turn off scaling (useful for refine, where optimization
is done in the scaled space).

	
plot(X=None)

	Initial steps for all plot functions.

Ensures model has been fitted.

	Args:
	
	X (numpy.array)
	The core and accessory distances to subsample.

(default = None)

	
class PopPUNK.models.DBSCANFit(outPrefix, max_samples=100000)

	Class for fits using HDBSCAN. Inherits from ClusterFit.

Must first run either fit() or load() before calling
other functions

	Args:
	
	outPrefix (str)
	The output prefix used for reading/writing

	max_samples (int)
	The number of subsamples to fit the model to

(default = 100000)

	
assign(X, no_scale=False, progress=True)

	Assign the clustering of new samples using assign_samples_dbscan()

	Args:
	
	X (numpy.array)
	Core and accessory distances

	no_scale (bool)
	Do not scale X

[default = False]

	progress (bool)
	Show progress bar

[default = True]

	Returns:
	
	y (numpy.array)
	Cluster assignments by samples

	
fit(X, max_num_clusters, min_cluster_prop)

	Extends fit()

Fits the distances with HDBSCAN and returns assignments by calling
fitDbScan().

Fitted parameters are stored in the object.

	Args:
	
	X (numpy.array)
	The core and accessory distances to cluster. Must be set if
preprocess is set.

	max_num_clusters (int)
	Maximum number of clusters in DBSCAN fitting

	min_cluster_prop (float)
	Minimum proportion of points in a cluster in DBSCAN fitting

	Returns:
	
	y (numpy.array)
	Cluster assignments of samples in X

	
load(fit_npz, fit_obj)

	Load the model from disk. Called from loadClusterFit()

	Args:
	
	fit_npz (dict)
	Fit npz opened with numpy.load()

	fit_obj (hdbscan.HDBSCAN)
	The saved fit object

	
plot(X=None, y=None)

	Extends plot()

Write a summary of the fit, and plot the results using
PopPUNK.plot.plot_dbscan_results()

	Args:
	
	X (numpy.array)
	Core and accessory distances

	y (numpy.array)
	Cluster assignments from assign()

	
save()

	Save the model to disk, as an npz and pkl (using outPrefix).

	
class PopPUNK.models.LineageFit(outPrefix, ranks, max_search_depth, reciprocal_only, count_unique_distances, dist_col=None, use_gpu=False)

	Class for fits using the lineage assignment model. Inherits from ClusterFit.

Must first run either fit() or load() before calling
other functions

	Args:
	
	outPrefix (str)
	The output prefix used for reading/writing

	ranks (list)
	The ranks used in the fit

	
assign(rank)

	Get the edges for the network. A little different from other methods,
as it doesn’t go through the long form distance vector (as coo_matrix
is basically already in the correct gt format)

	Args:
	
	rank (int)
	Rank to assign at

	Returns:
	
	y (list of tuples)
	Edges to include in network

	
edge_weights(rank)

	Get the distances for each edge returned by assign

	Args:
	
	rank (int)
	Rank assigned at

	Returns:
	
	weights (list)
	Distance for each assignment

	
extend(qqDists, qrDists)

	Update the sparse distance matrix of nearest neighbours after querying

	Args:
	
	qqDists (numpy or cupy ndarray)
	Two column array of query-query distances

	qqDists (numpy or cupy ndarray)
	Two column array of reference-query distances

	Returns:
	
	y (list of tuples)
	Edges to include in network

	
fit(X, accessory)

	Extends fit()

Gets assignments by using nearest neigbours.

	Args:
	
	X (numpy.array)
	The core and accessory distances to cluster. Must be set if
preprocess is set.

	accessory (bool)
	Use accessory rather than core distances

	Returns:
	
	y (numpy.array)
	Cluster assignments of samples in X

	
load(fit_npz, fit_obj)

	Load the model from disk. Called from loadClusterFit()

	Args:
	
	fit_npz (dict)
	Fit npz opened with numpy.load()

	fit_obj (sklearn.mixture.BayesianGaussianMixture)
	The saved fit object

	
plot(X, y=None)

	Extends plot()

Write a summary of the fit, and plot the results using
PopPUNK.plot.plot_results() and PopPUNK.plot.plot_contours()

	Args:
	
	X (numpy.array)
	Core and accessory distances

	y (any)
	Unused variable for compatibility with other
plotting functions

	
save()

	Save the model to disk, as an npz and pkl (using outPrefix).

	
class PopPUNK.models.NumpyShared(name, shape, dtype)

	
	
dtype

	Alias for field number 2

	
name

	Alias for field number 0

	
shape

	Alias for field number 1

	
class PopPUNK.models.RefineFit(outPrefix)

	Class for fits using a triangular boundary and network properties. Inherits from ClusterFit.

Must first run either fit() or load() before calling
other functions

	Args:
	
	outPrefix (str)
	The output prefix used for reading/writing

	
apply_threshold(X, threshold)

	Applies a boundary threshold, given by user. Does not run
optimisation.

	Args:
	
	X (numpy.array)
	The core and accessory distances to cluster. Must be set if
preprocess is set.

	threshold (float)
	The value along the x-axis (core distance) at which to
draw the assignment boundary

	Returns:
	
	y (numpy.array)
	Cluster assignments of samples in X

	
assign(X, slope=None)

	Assign the clustering of new samples

	Args:
	
	X (numpy.array)
	Core and accessory distances

	slope (int)
	Override self.slope. Default - use self.slope
Set to 0 for a vertical line, 1 for a horizontal line, or
2 to use a slope

	Returns:
	
	y (numpy.array)
	Cluster assignments by samples

	
fit(X, sample_names, model, max_move, min_move, startFile=None, indiv_refine=False, unconstrained=False, multi_boundary=0, score_idx=0, no_local=False, betweenness_sample=100, use_gpu=False)

	Extends fit()

Fits the distances by optimising network score, by calling
refineFit2D().

Fitted parameters are stored in the object.

	Args:
	
	X (numpy.array)
	The core and accessory distances to cluster. Must be set if
preprocess is set.

	sample_names (list)
	Sample names in X (accessed by iterDistRows())

	model (ClusterFit)
	The model fit to refine

	max_move (float)
	Maximum distance to move away from start point

	min_move (float)
	Minimum distance to move away from start point

	startFile (str)
	A file defining an initial fit, rather than one from --fit-model.
See documentation for format.
(default = None).

	indiv_refine (str)
	Run refinement for core or accessory distances separately
(default = None).

	multi_boundary (int)
	Produce cluster output at multiple boundary positions downward
from the optimum.
(default = 0).

	unconstrained (bool)
	If True, search in 2D and change the slope of the boundary

	score_idx (int)
	Index of score from networkSummary() to use
[default = 0]

	no_local (bool)
	Turn off the local optimisation step.
Quicker, but may be less well refined.

	betweenness_sample (int)
	Number of sequences per component used to estimate betweenness using
a GPU. Smaller numbers are faster but less precise [default = 100]

	use_gpu (bool)
	Whether to use cugraph for graph analyses

	Returns:
	
	y (numpy.array)
	Cluster assignments of samples in X

	
load(fit_npz, fit_obj)

	Load the model from disk. Called from loadClusterFit()

	Args:
	
	fit_npz (dict)
	Fit npz opened with numpy.load()

	fit_obj (None)
	The saved fit object (not used)

	
plot(X, y=None)

	Extends plot()

Write a summary of the fit, and plot the results using
PopPUNK.plot.plot_refined_results()

	Args:
	
	X (numpy.array)
	Core and accessory distances

	y (numpy.array)
	Assignments (unused)

	
save()

	Save the model to disk, as an npz and pkl (using outPrefix).

	
PopPUNK.models.assign_samples(chunk, X, y, model, scale, chunk_size, values=False)

	Runs a models assignment on a chunk of input

	Args:
	
	chunk (int)
	Index of chunk to process

	X (NumpyShared)
	n x 2 array of core and accessory distances for n samples

	y (NumpyShared)
	An n-vector to store results, with the most likely cluster memberships
or an n by k matrix with the component responsibilities for each sample.

	weights (numpy.array)
	Component weights from BGMMFit

	means (numpy.array)
	Component means from BGMMFit

	covars (numpy.array)
	Component covariances from BGMMFit

	scale (numpy.array)
	Scaling of core and accessory distances from BGMMFit

	chunk_size (int)
	Size of each chunk in X

	values (bool)
	Whether to return the responsibilities, rather than the most
likely assignment (used for entropy calculation).

Default is False

	
PopPUNK.models.loadClusterFit(pkl_file, npz_file, outPrefix='', max_samples=100000, use_gpu=False)

	Call this to load a fitted model

	Args:
	
	pkl_file (str)
	Location of saved .pkl file on disk

	npz_file (str)
	Location of saved .npz file on disk

	outPrefix (str)
	Output prefix for model to save to (e.g. plots)

	max_samples (int)
	Maximum samples if subsampling X
[default = 100000]

	use_gpu (bool)
	Whether to load npz file with GPU libraries
for lineage models

	Returns:
	
	load_obj (model)
	Loaded model

network.py

Functions used to construct the network, and update with new queries. Main
entry point is constructNetwork() for new reference
databases, and findQueryLinksToNetwork() for querying
databases.

Network functions

	
PopPUNK.network.addQueryToNetwork(dbFuncs, rList, qList, G, assignments, model, queryDB, kmers=None, distance_type='euclidean', queryQuery=False, strand_preserved=False, weights=None, threads=1, use_gpu=False)

	Finds edges between queries and items in the reference database,
and modifies the network to include them.

	Args:
	
	dbFuncs (list)
	List of backend functions from setupDBFuncs()

	rList (list)
	List of reference names

	qList (list)
	List of query names

	G (graph)
	Network to add to (mutated)

	assignments (numpy.array)
	Cluster assignment of items in qlist

	model (ClusterModel)
	Model fitted to reference database

	queryDB (str)
	Query database location

	distances (str)
	Prefix of distance files for extending network

	kmers (list)
	List of k-mer sizes

	distance_type (str)
	Distance type to use as weights in network

	queryQuery (bool)
	Add in all query-query distances
(default = False)

	strand_preserved (bool)
	Whether to treat strand as known (i.e. ignore rc k-mers)
when adding random distances. Only used if queryQuery = True
[default = False]

	weights (numpy.array)
	If passed, the core,accessory distances for each assignment, which will
be annotated as an edge attribute

	threads (int)
	Number of threads to use if new db created

	use_gpu (bool)
	Whether to use cugraph for analysis

(default = 1)

	Returns:
	
	distMat (numpy.array)
	Query-query distances

	
PopPUNK.network.add_self_loop(G_df, seq_num, weights=False, renumber=True)

	Adds self-loop to cugraph graph to ensure all nodes are included in
the graph, even if singletons.

	Args:
	
	G_df (cudf)
	cudf data frame containing edge list

	seq_num (int)
	The expected number of nodes in the graph

	renumber (bool)
	Whether to renumber the vertices when added to the graph

	Returns:
	
	G_new (graph)
	Dictionary of cluster assignments (keys are sequence names)

	
PopPUNK.network.checkNetworkVertexCount(seq_list, G, use_gpu)

	Checks the number of network vertices matches the number
of sequence names.

	Args:
	
	seq_list (list)
	The list of sequence names

	G (graph)
	The network of sequences

	use_gpu (bool)
	Whether to use cugraph for graph analyses

	
PopPUNK.network.cliquePrune(component, graph, reference_indices, components_list)

	Wrapper function around getCliqueRefs() so it can be
called by a multiprocessing pool

	
PopPUNK.network.construct_dense_weighted_network(rlist, distMat, weights_type=None, use_gpu=False)

	Construct an undirected network using sequence lists, assignments of pairwise distances
to clusters, and the identifier of the cluster assigned to within-strain distances.
Nodes are samples and edges where samples are within the same cluster

Will print summary statistics about the network to STDERR

	Args:
	
	rlist (list)
	List of reference sequence labels

	distMat (2 column ndarray)
	Numpy array of pairwise distances

	weights_type (str)
	Type of weight to use for network

	use_gpu (bool)
	Whether to use GPUs for network construction

	Returns:
	
	G (graph)
	The resulting network

	
PopPUNK.network.construct_network_from_assignments(rlist, qlist, assignments, within_label=1, int_offset=0, weights=None, distMat=None, weights_type=None, previous_network=None, old_ids=None, adding_qq_dists=False, previous_pkl=None, betweenness_sample=100, summarise=True, use_gpu=False)

	Construct an undirected network using sequence lists, assignments of pairwise distances
to clusters, and the identifier of the cluster assigned to within-strain distances.
Nodes are samples and edges where samples are within the same cluster

Will print summary statistics about the network to STDERR

	Args:
	
	rlist (list)
	List of reference sequence labels

	qlist (list)
	List of query sequence labels

	assignments (numpy.array or int)
	Labels of most likely cluster assignment

	within_label (int)
	The label for the cluster representing within-strain distances

	int_offset (int)
	Constant integer to add to each node index

	weights (list)
	List of weights for each edge in the network

	distMat (2 column ndarray)
	Numpy array of pairwise distances

	weights_type (str)
	Measure to calculate from the distMat to use as edge weights in network
- options are core, accessory or euclidean distance

	previous_network (str)
	Name of file containing a previous network to be integrated into this new
network

	old_ids (list)
	Ordered list of vertex names in previous network

	adding_qq_dists (bool)
	Boolean specifying whether query-query edges are being added
to an existing network, such that not all the sequence IDs will
be found in the old IDs, which should already be correctly ordered

	previous_pkl (str)
	Name of file containing the names of the sequences in the previous_network

	betweenness_sample (int)
	Number of sequences per component used to estimate betweenness using
a GPU. Smaller numbers are faster but less precise [default = 100]

	summarise (bool)
	Whether to calculate and print network summaries with networkSummary()
(default = True)

	use_gpu (bool)
	Whether to use GPUs for network construction

	Returns:
	
	G (graph)
	The resulting network

	
PopPUNK.network.construct_network_from_df(rlist, qlist, G_df, weights=False, distMat=None, previous_network=None, adding_qq_dists=False, old_ids=None, previous_pkl=None, betweenness_sample=100, summarise=True, use_gpu=False)

	Construct an undirected network using a data frame of edges. Nodes are samples and
edges where samples are within the same cluster

Will print summary statistics about the network to STDERR

	Args:
	
	rlist (list)
	List of reference sequence labels

	qlist (list)
	List of query sequence labels

	G_df (cudf or pandas data frame)
	Data frame in which the first two columns are the nodes linked by edges

	weights (bool)
	Whether weights in the G_df data frame should be included in the network

	distMat (2 column ndarray)
	Numpy array of pairwise distances

	previous_network (str or graph object)
	Name of file containing a previous network to be integrated into this new
network, or the already-loaded graph object

	adding_qq_dists (bool)
	Boolean specifying whether query-query edges are being added
to an existing network, such that not all the sequence IDs will
be found in the old IDs, which should already be correctly ordered

	old_ids (list)
	Ordered list of vertex names in previous network

	previous_pkl (str)
	Name of file containing the names of the sequences in the previous_network

	betweenness_sample (int)
	Number of sequences per component used to estimate betweenness using
a GPU. Smaller numbers are faster but less precise [default = 100]

	summarise (bool)
	Whether to calculate and print network summaries with networkSummary()
(default = True)

	use_gpu (bool)
	Whether to use GPUs for network construction

	Returns:
	
	G (graph)
	The resulting network

	
PopPUNK.network.construct_network_from_edge_list(rlist, qlist, edge_list, weights=None, distMat=None, previous_network=None, adding_qq_dists=False, old_ids=None, previous_pkl=None, betweenness_sample=100, summarise=True, use_gpu=False)

	Construct an undirected network using a data frame of edges. Nodes are samples and
edges where samples are within the same cluster

Will print summary statistics about the network to STDERR

	Args:
	
	rlist (list)
	List of reference sequence labels

	qlist (list)
	List of query sequence labels

	G_df (cudf or pandas data frame)
	Data frame in which the first two columns are the nodes linked by edges

	weights (list)
	List of edge weights

	distMat (2 column ndarray)
	Numpy array of pairwise distances

	previous_network (str or graph object)
	Name of file containing a previous network to be integrated into this new
network, or the already-loaded graph object

	adding_qq_dists (bool)
	Boolean specifying whether query-query edges are being added
to an existing network, such that not all the sequence IDs will
be found in the old IDs, which should already be correctly ordered

	old_ids (list)
	Ordered list of vertex names in previous network

	previous_pkl (str)
	Name of file containing the names of the sequences in the previous_network

	betweenness_sample (int)
	Number of sequences per component used to estimate betweenness using
a GPU. Smaller numbers are faster but less precise [default = 100]

	summarise (bool)
	Whether to calculate and print network summaries with networkSummary()
(default = True)

	use_gpu (bool)
	Whether to use GPUs for network construction

	Returns:
	
	G (graph)
	The resulting network

	
PopPUNK.network.construct_network_from_sparse_matrix(rlist, qlist, sparse_input, weights=None, previous_network=None, previous_pkl=None, betweenness_sample=100, summarise=True, use_gpu=False)

	Construct an undirected network using a sparse matrix. Nodes are samples and
edges where samples are within the same cluster

Will print summary statistics about the network to STDERR

	Args:
	
	rlist (list)
	List of reference sequence labels

	qlist (list)
	List of query sequence labels

	sparse_input (numpy.array)
	Sparse distance matrix from lineage fit

	weights (list)
	List of weights for each edge in the network

	distMat (2 column ndarray)
	Numpy array of pairwise distances

	previous_network (str)
	Name of file containing a previous network to be integrated into this new
network

	previous_pkl (str)
	Name of file containing the names of the sequences in the previous_network

	betweenness_sample (int)
	Number of sequences per component used to estimate betweenness using
a GPU. Smaller numbers are faster but less precise [default = 100]

	summarise (bool)
	Whether to calculate and print network summaries with networkSummary()
(default = True)

	use_gpu (bool)
	Whether to use GPUs for network construction

	Returns:
	
	G (graph)
	The resulting network

	
PopPUNK.network.cugraph_to_graph_tool(G, rlist)

	Save a network to disk

	Args:
	
	G (cugraph network)
	Cugraph network

	rlist (list)
	List of sequence names

	Returns:
	
	G (graph-tool network)
	Graph tool network

	
PopPUNK.network.extractReferences(G, dbOrder, outPrefix, outSuffix='', type_isolate=None, existingRefs=None, threads=1, use_gpu=False)

	Extract references for each cluster based on cliques

Writes chosen references to file by calling writeReferences()

	Args:
	
	G (graph)
	A network used to define clusters

	dbOrder (list)
	The order of files in the sketches, so returned references are in the same order

	outPrefix (str)
	Prefix for output file

	outSuffix (str)
	Suffix for output file (.refs will be appended)

	type_isolate (str)
	Isolate to be included in set of references

	existingRefs (list)
	References that should be used for each clique

	use_gpu (bool)
	Use cugraph for graph analysis (default = False)

	Returns:
	
	refFileName (str)
	The name of the file references were written to

	references (list)
	An updated list of the reference names

	
PopPUNK.network.fetchNetwork(network_dir, model, refList, ref_graph=False, core_only=False, accessory_only=False, use_gpu=False)

	Load the network based on input options

Returns the network as a graph-tool format graph, and sets
the slope parameter of the passed model object.

	Args:
	
	network_dir (str)
	A network used to define clusters

	model (ClusterFit)
	A fitted model object

	refList (list)
	Names of references that should be in the network

	ref_graph (bool)
	Use ref only graph, if available
[default = False]

	core_only (bool)
	Return the network created using only core distances
[default = False]

	accessory_only (bool)
	Return the network created using only accessory distances
[default = False]

	use_gpu (bool)
	Use cugraph library to load graph

	Returns:
	
	genomeNetwork (graph)
	The loaded network

	cluster_file (str)
	The CSV of cluster assignments corresponding to this network

	
PopPUNK.network.generate_minimum_spanning_tree(G, from_cugraph=False)

	Generate a minimum spanning tree from a network

	Args:
	
	G (network)
	Graph tool network

	from_cugraph (bool)
	If a pre-calculated MST from cugraph
[default = False]

	Returns:
	
	mst_network (str)
	Minimum spanning tree (as graph-tool graph)

	
PopPUNK.network.getCliqueRefs(G, reference_indices={})

	Recursively prune a network of its cliques. Returns one vertex from
a clique at each stage

	Args:
	
	G (graph)
	The graph to get clique representatives from

	reference_indices (set)
	The unique list of vertices being kept, to add to

	
PopPUNK.network.get_cugraph_triangles(G)

	Counts the number of triangles in a cugraph
network. Can be removed when the cugraph issue
https://github.com/rapidsai/cugraph/issues/1043 is fixed.

	Args:
	
	G (cugraph network)
	Network to be analysed

	Returns:
	
	triangle_count (int)
	Count of triangles in graph

	
PopPUNK.network.get_vertex_list(G, use_gpu=False)

	Generate a list of node indices

	Args:
	
	G (network)
	Graph tool network

	use_gpu (bool)
	Whether graph is a cugraph or not
[default = False]

	Returns:
	
	vlist (list)
	List of integers corresponding to nodes

	
PopPUNK.network.load_network_file(fn, use_gpu=False)

	Load the network based on input options

Returns the network as a graph-tool format graph, and sets
the slope parameter of the passed model object.

	Args:
	
	fn (str)
	Network file name

	use_gpu (bool)
	Use cugraph library to load graph

	Returns:
	
	genomeNetwork (graph)
	The loaded network

	
PopPUNK.network.networkSummary(G, calc_betweenness=True, betweenness_sample=100, use_gpu=False)

	Provides summary values about the network

	Args:
	
	G (graph)
	The network of strains

	calc_betweenness (bool)
	Whether to calculate betweenness stats

	use_gpu (bool)
	Whether to use cugraph for graph analysis

	Returns:
	
	metrics (list)
	List with # components, density, transitivity, mean betweenness
and weighted mean betweenness

	scores (list)
	List of scores

	
PopPUNK.network.network_to_edges(prev_G_fn, rlist, adding_qq_dists=False, old_ids=None, previous_pkl=None, weights=False, use_gpu=False)

	Load previous network, extract the edges to match the
vertex order specified in rlist, and also return weights if specified.

	Args:
	
	prev_G_fn (str or graph object)
	Path of file containing existing network, or already-loaded
graph object

	adding_qq_dists (bool)
	Boolean specifying whether query-query edges are being added
to an existing network, such that not all the sequence IDs will
be found in the old IDs, which should already be correctly ordered

	rlist (list)
	List of reference sequence labels in new network

	old_ids (list)
	List of IDs of vertices in existing network

	previous_pkl (str)
	Path of pkl file containing names of sequences in
previous network

	weights (bool)
	Whether to return edge weights
(default = False)

	use_gpu (bool)
	Whether to use cugraph for graph analyses

	Returns:
	
	source_ids (list)
	Source nodes for each edge

	target_ids (list)
	Target nodes for each edge

	edge_weights (list)
	Weights for each new edge

	
PopPUNK.network.printClusters(G, rlist, outPrefix=None, oldClusterFile=None, externalClusterCSV=None, printRef=True, printCSV=True, clustering_type='combined', write_unwords=True, use_gpu=False)

	Get cluster assignments

Also writes assignments to a CSV file

	Args:
	
	G (graph)
	Network used to define clusters

	rlist (list)
	Names of samples

	outPrefix (str)
	Prefix for output CSV
Default = None

	oldClusterFile (str)
	CSV with previous cluster assignments.
Pass to ensure consistency in cluster assignment name.
Default = None

	externalClusterCSV (str)
	CSV with cluster assignments from any source. Will print a file
relating these to new cluster assignments
Default = None

	printRef (bool)
	If false, print only query sequences in the output
Default = True

	printCSV (bool)
	Print results to file
Default = True

	clustering_type (str)
	Type of clustering network, used for comparison with old clusters
Default = ‘combined’

	write_unwords (bool)
	Write clusters with a pronouncable name rather than numerical index
Default = True

	use_gpu (bool)
	Whether to use cugraph for network analysis

	Returns:
	
	clustering (dict)
	Dictionary of cluster assignments (keys are sequence names)

	
PopPUNK.network.printExternalClusters(newClusters, extClusterFile, outPrefix, oldNames, printRef=True)

	Prints cluster assignments with respect to previously defined
clusters or labels.

	Args:
	
	newClusters (set iterable)
	The components from the graph G, defining the PopPUNK clusters

	extClusterFile (str)
	A CSV file containing definitions of the external clusters for
each sample (does not need to contain all samples)

	outPrefix (str)
	Prefix for output CSV (_external_clusters.csv)

	oldNames (list)
	A list of the reference sequences

	printRef (bool)
	If false, print only query sequences in the output

Default = True

	
PopPUNK.network.print_network_summary(G, betweenness_sample=100, use_gpu=False)

	Wrapper function for printing network information

	Args:
	
	G (graph)
	List of reference sequence labels

	betweenness_sample (int)
	Number of sequences per component used to estimate betweenness using
a GPU. Smaller numbers are faster but less precise [default = 100]

	use_gpu (bool)
	Whether to use GPUs for network construction

	
PopPUNK.network.process_previous_network(previous_network=None, adding_qq_dists=False, old_ids=None, previous_pkl=None, vertex_labels=None, weights=False, use_gpu=False)

	Extract edge types from an existing network

	Args:
	
	previous_network (str or graph object)
	Name of file containing a previous network to be integrated into this new
network, or already-loaded graph object

	adding_qq_dists (bool)
	Boolean specifying whether query-query edges are being added
to an existing network, such that not all the sequence IDs will
be found in the old IDs, which should already be correctly ordered

	old_ids (list)
	Ordered list of vertex names in previous network

	previous_pkl (str)
	Name of file containing the names of the sequences in the previous_network
ordered based on the original network construction

	vertex_labels (list)
	Ordered list of sequence labels

	weights (bool)
	Whether weights should be extracted from the previous network

	use_gpu (bool)
	Whether to use GPUs for network construction

	Returns:
	
	extra_sources (list)
	List of source node identifiers

	extra_targets (list)
	List of destination node identifiers

	extra_weights (list or None)
	List of edge weights

	
PopPUNK.network.process_weights(distMat, weights_type)

	Calculate edge weights from the distance matrix

	Args:
	
	distMat (2 column ndarray)
	Numpy array of pairwise distances

	weights_type (str)
	Measure to calculate from the distMat to use as edge weights in network
- options are core, accessory or euclidean distance

	Returns:
	
	processed_weights (list)
	Edge weights

	
PopPUNK.network.save_network(G, prefix=None, suffix=None, use_graphml=False, use_gpu=False)

	Save a network to disk

	Args:
	
	G (network)
	Graph tool network

	prefix (str)
	Prefix for output file

	use_graphml (bool)
	Whether to output a graph-tool file
in graphml format

	use_gpu (bool)
	Whether graph is a cugraph or not
[default = False]

	
PopPUNK.network.sparse_mat_to_network(sparse_mat, rlist, use_gpu=False)

	Generate a network from a lineage rank fit

	Args:
	
	sparse_mat (scipy or cupyx sparse matrix)
	Sparse matrix of kNN from lineage fit

	rlist (list)
	List of sequence names

	use_gpu (bool)
	Whether GPU libraries should be used

	Returns:
	
	G (network)
	Graph tool or cugraph network

	
PopPUNK.network.translate_network_indices(G_ref_df, reference_indices)

	Function for ensuring an updated reference network retains
numbering consistent with sample names

	Args:
	
	G_ref_df (cudf data frame)
	List of edges in reference network

	reference_indices (list)
	The ordered list of reference indices in the original network

	Returns:
	
	G_ref (cugraph network)
	Network of reference sequences

	
PopPUNK.network.vertex_betweenness(graph, norm=True)

	Returns betweenness for nodes in the graph

	
PopPUNK.network.writeReferences(refList, outPrefix, outSuffix='')

	Writes chosen references to file

	Args:
	
	refList (list)
	Reference names to write

	outPrefix (str)
	Prefix for output file

	outSuffix (str)
	Suffix for output file (.refs will be appended)

	Returns:
	
	refFileName (str)
	The name of the file references were written to

refine.py

Functions used to refine an existing model. Access using
RefineFit.

Refine mixture model using network properties

	
class PopPUNK.refine.NumpyShared(name, shape, dtype)

	
	
dtype

	Alias for field number 2

	
name

	Alias for field number 0

	
shape

	Alias for field number 1

	
PopPUNK.refine.check_search_range(scale, mean0, mean1, lower_s, upper_s)

	Checks a search range is within a valid range

	Args:
	
	scale (np.array)
	Rescaling factor to [0, 1] for each axis

	mean0 (np.array)
	(x, y) of starting point defining line

	mean1 (np.array)
	(x, y) of end point defining line

	lower_s (float)
	distance along line to start search

	upper_s (float)
	distance along line to end search

	Returns:
	
	min_x, max_x
	minimum and maximum x-intercepts of the search range

	min_y, max_y
	minimum and maximum x-intercepts of the search range

	
PopPUNK.refine.expand_cugraph_network(G, G_extra_df)

	Reconstruct a cugraph network with additional edges.

	Args:
	
	G (cugraph network)
	Original cugraph network

	extra_edges (cudf dataframe)
	Data frame of edges to add

	Returns:
	
	G (cugraph network)
	Expanded cugraph network

	
PopPUNK.refine.growNetwork(sample_names, i_vec, j_vec, idx_vec, s_range, score_idx=0, thread_idx=0, betweenness_sample=100, write_clusters=None, use_gpu=False)

	Construct a network, then add edges to it iteratively.
Input is from pp_sketchlib.iterateBoundary1D or``pp_sketchlib.iterateBoundary2D``

	Args:
	
	sample_names (list)
	Sample names corresponding to distMat (accessed by iterator)

	i_vec (list)
	Ordered ref vertex index to add

	j_vec (list)
	Ordered query (==ref) vertex index to add

	idx_vec (list)
	For each i, j tuple, the index of the intercept at which these enter
the network. These are sorted and increasing

	s_range (list)
	Offsets which correspond to idx_vec entries

	score_idx (int)
	Index of score from networkSummary() to use
[default = 0]

	thread_idx (int)
	Optional thread idx (if multithreaded) to offset progress bar by

	betweenness_sample (int)
	Number of sequences per component used to estimate betweenness using
a GPU. Smaller numbers are faster but less precise [default = 100]

	write_clusters (str)
	Set to a prefix to write the clusters from each position to files
[default = None]

	use_gpu (bool)
	Whether to use cugraph for graph analyses

	Returns:
	
	scores (list)
	-1 * network score for each of x_range.
Where network score is from networkSummary()

	
PopPUNK.refine.likelihoodBoundary(s, model, start, end, within, between)

	Wrapper function around fit2dMultiGaussian() so that it can
go into a root-finding function for probabilities between components

	Args:
	
	s (float)
	Distance along line from mean0

	model (BGMMFit)
	Fitted mixture model

	start (numpy.array)
	The co-ordinates of the centre of the within-strain distribution

	end (numpy.array)
	The co-ordinates of the centre of the between-strain distribution

	within (int)
	Label of the within-strain distribution

	between (int)
	Label of the between-strain distribution

	Returns:
	
	responsibility (float)
	The difference between responsibilities of assignment to the within component
and the between assignment

	
PopPUNK.refine.multi_refine(distMat, sample_names, mean0, mean1, scale, s_max, n_boundary_points, output_prefix, num_processes=1, use_gpu=False)

	Move the refinement boundary between the optimum and where it meets an
axis. Discrete steps, output the clusers at each step

	Args:
	
	distMat (numpy.array)
	n x 2 array of core and accessory distances for n samples

	sample_names (list)
	List of query sequence labels

	mean0 (numpy.array)
	Start point to define search line

	mean1 (numpy.array)
	End point to define search line

	scale (numpy.array)
	Scaling factor of distMat

	s_max (float)
	The optimal s position from refinement (refineFit())

	n_boundary_points (int)
	Number of positions to try drawing the boundary at

	num_processes (int)
	Number of threads to use in the global optimisation step.
(default = 1)

	use_gpu (bool)
	Whether to use cugraph for graph analyses

	
PopPUNK.refine.newNetwork(s, sample_names, distMat, mean0, mean1, gradient, slope=2, score_idx=0, cpus=1, betweenness_sample=100, use_gpu=False)

	Wrapper function for construct_network_from_edge_list() which is called
by optimisation functions moving a triangular decision boundary.

Given the boundary parameterisation, constructs the network and returns
its score, to be minimised.

	Args:
	
	s (float)
	Distance along line between start_point and mean1 from start_point

	sample_names (list)
	Sample names corresponding to distMat (accessed by iterator)

	distMat (numpy.array or NumpyShared)
	Core and accessory distances or NumpyShared describing these in sharedmem

	mean0 (numpy.array)
	Start point

	mean1 (numpy.array)
	End point

	gradient (float)
	Gradient of line to move along

	slope (int)
	Set to 0 for a vertical line, 1 for a horizontal line, or
2 to use a slope
[default = 2]

	score_idx (int)
	Index of score from networkSummary() to use
[default = 0]

	cpus (int)
	Number of CPUs to use for calculating assignment

	betweenness_sample (int)
	Number of sequences per component used to estimate betweenness using
a GPU. Smaller numbers are faster but less precise [default = 100]

	use_gpu (bool)
	Whether to use cugraph for graph analysis

	Returns:
	
	score (float)
	-1 * network score. Where network score is from networkSummary()

	
PopPUNK.refine.newNetwork2D(y_idx, sample_names, distMat, x_range, y_range, score_idx=0, betweenness_sample=100, use_gpu=False)

	Wrapper function for thresholdIterate2D and growNetwork().

For a given y_max, constructs networks across x_range and returns a list
of scores

	Args:
	
	y_idx (float)
	Maximum y-intercept of boundary, as index into y_range

	sample_names (list)
	Sample names corresponding to distMat (accessed by iterator)

	distMat (numpy.array or NumpyShared)
	Core and accessory distances or NumpyShared describing these in sharedmem

	x_range (list)
	Sorted list of x-intercepts to search

	y_range (list)
	Sorted list of y-intercepts to search

	score_idx (int)
	Index of score from networkSummary() to use
[default = 0]

	betweenness_sample (int)
	Number of sequences per component used to estimate betweenness using
a GPU. Smaller numbers are faster but less precise [default = 100]

	use_gpu (bool)
	Whether to use cugraph for graph analysis

	Returns:
	
	scores (list)
	-1 * network score for each of x_range.
Where network score is from networkSummary()

	
PopPUNK.refine.readManualStart(startFile)

	Reads a file to define a manual start point, rather than using --fit-model

Throws and exits if incorrectly formatted.

	Args:
	
	startFile (str)
	Name of file with values to read

	Returns:
	
	mean0 (numpy.array)
	Centre of within-strain distribution

	mean1 (numpy.array)
	Centre of between-strain distribution

	scaled (bool)
	True if means are scaled between [0,1]

	
PopPUNK.refine.refineFit(distMat, sample_names, mean0, mean1, scale, max_move, min_move, slope=2, score_idx=0, unconstrained=False, no_local=False, num_processes=1, betweenness_sample=100, use_gpu=False)

	Try to refine a fit by maximising a network score based on transitivity and density.

Iteratively move the decision boundary to do this, using starting point from existing model.

	Args:
	
	distMat (numpy.array)
	n x 2 array of core and accessory distances for n samples

	sample_names (list)
	List of query sequence labels

	mean0 (numpy.array)
	Start point to define search line

	mean1 (numpy.array)
	End point to define search line

	scale (numpy.array)
	Scaling factor of distMat

	max_move (float)
	Maximum distance to move away from start point

	min_move (float)
	Minimum distance to move away from start point

	slope (int)
	Set to 0 for a vertical line, 1 for a horizontal line, or
2 to use a slope

	score_idx (int)
	Index of score from networkSummary() to use
[default = 0]

	unconstrained (bool)
	If True, search in 2D and change the slope of the boundary

	no_local (bool)
	Turn off the local optimisation step.
Quicker, but may be less well refined.

	num_processes (int)
	Number of threads to use in the global optimisation step.
(default = 1)

	betweenness_sample (int)
	Number of sequences per component used to estimate betweenness using
a GPU. Smaller numbers are faster but less precise [default = 100]

	use_gpu (bool)
	Whether to use cugraph for graph analyses

	Returns:
	
	optimal_x (float)
	x-coordinate of refined fit

	optimal_y (float)
	y-coordinate of refined fit

	optimised_s (float)
	Position along search range of refined fit

plot.py

Plots of GMM results, k-mer fits, and microreact output

	
PopPUNK.plot.createMicroreact(prefix, microreact_files, api_key=None)

	Creates a .microreact file, and instance via the API

	Args:
	
	prefix (str)
	Prefix for output file

	microreact_files (str)
	List of Microreact files [clusters, dot, tree, mst_tree]

	api_key (str)
	API key for your account

	
PopPUNK.plot.distHistogram(dists, rank, outPrefix)

	Plot a histogram of distances (1D)

	Args:
	
	dists (np.array)
	Distance vector

	rank (int)
	Rank (used for name and title)

	outPrefix (int)
	Full path prefix for plot file

	
PopPUNK.plot.drawMST(mst, outPrefix, isolate_clustering, clustering_name, overwrite)

	Plot a layout of the minimum spanning tree

	Args:
	
	mst (graph_tool.Graph)
	A minimum spanning tree

	outPrefix (str)
	Output prefix for save files

	isolate_clustering (dict)
	Dictionary of ID: cluster, used for colouring vertices

	clustering_name (str)
	Name of clustering scheme to be used for colouring

	overwrite (bool)
	Overwrite existing output files

	
PopPUNK.plot.get_grid(minimum, maximum, resolution)

	Get a square grid of points to evaluate a function across

Used for plot_scatter() and plot_contours()

	Args:
	
	minimum (float)
	Minimum value for grid

	maximum (float)
	Maximum value for grid

	resolution (int)
	Number of points along each axis

	Returns:
	
	xx (numpy.array)
	x values across n x n grid

	yy (numpy.array)
	y values across n x n grid

	xy (numpy.array)
	n x 2 pairs of x, y values grid is over

	
PopPUNK.plot.outputsForCytoscape(G, G_mst, isolate_names, clustering, outPrefix, epiCsv, queryList=None, suffix=None, writeCsv=True)

	Write outputs for cytoscape. A graphml of the network, and CSV with metadata

	Args:
	
	G (graph)
	The network to write

	G_mst (graph)
	The minimum spanning tree of G

	isolate_names (list)
	Ordered list of sequence names

	clustering (dict)
	Dictionary of cluster assignments (keys are nodeNames).

	outPrefix (str)
	Prefix for files to be written

	epiCsv (str)
	Optional CSV of epi data to paste in the output in addition to
the clusters.

	queryList (list)
	Optional list of isolates that have been added as a query.
(default = None)

	suffix (string)
	String to append to network file name.
(default = None)

	writeCsv (bool)
	Whether to print CSV file to accompany network

	
PopPUNK.plot.outputsForGrapetree(combined_list, clustering, nj_tree, mst_tree, outPrefix, epiCsv, queryList=None, overwrite=False)

	Generate files for Grapetree

Write a neighbour joining tree (.nwk) from core distances
and cluster assignment (.csv)

	Args:
	
	combined_list (list)
	Name of sequences being analysed. The part of the name before the
first ‘.’ will be shown in the output

	clustering (dict or dict of dicts)
	List of cluster assignments from printClusters().
Further clusterings (e.g. 1D core only) can be included by passing these
as a dict.

	nj_tree (str or None)
	String representation of a Newick-formatted NJ tree

	mst_tree (str or None)
	String representation of a Newick-formatted minimum-spanning tree

	outPrefix (str)
	Prefix for all generated output files, which will be placed in outPrefix
subdirectory.

	epiCsv (str)
	A CSV containing other information, to include with the CSV of clusters

	queryList (list)
	Optional list of isolates that have been added as a query for colouring
in the CSV. (default = None)

	overwrite (bool)
	Overwrite existing output if present (default = False).

	
PopPUNK.plot.outputsForMicroreact(combined_list, clustering, nj_tree, mst_tree, accMat, perplexity, maxIter, outPrefix, epiCsv, queryList=None, overwrite=False, n_threads=1, use_gpu=False, device_id=0)

	Generate files for microreact

Output a neighbour joining tree (.nwk) from core distances, a plot of t-SNE clustering
of accessory distances (.dot) and cluster assignment (.csv)

	Args:
	
	combined_list (list)
	Name of sequences being analysed. The part of the name before the first ‘.’ will
be shown in the output

	clustering (dict or dict of dicts)
	List of cluster assignments from printClusters().
Further clusterings (e.g. 1D core only) can be included by passing these as a dict.

	nj_tree (str or None)
	String representation of a Newick-formatted NJ tree

	mst_tree (str or None)
	String representation of a Newick-formatted minimum-spanning tree

	accMat (numpy.array)
	n x n array of accessory distances for n samples.

	perplexity (int)
	Perplexity parameter passed to mandrake

	maxIter (int)
	Maximum iterations for mandrake

	outPrefix (str)
	Prefix for all generated output files, which will be placed in outPrefix subdirectory

	epiCsv (str)
	A CSV containing other information, to include with the CSV of clusters

	queryList (list)
	Optional list of isolates that have been added as a query for colouring in the CSV.
(default = None)

	overwrite (bool)
	Overwrite existing output if present (default = False)

	n_threads (int)
	Number of CPU threads to use
(default = 1)

	use_gpu (bool)
	Whether to use a GPU for t-SNE generation

	device_id (int)
	Device ID of GPU to be used
(default = 0)

	Returns:
	
	outfiles (list)
	List of output files create

	
PopPUNK.plot.outputsForPhandango(combined_list, clustering, nj_tree, mst_tree, outPrefix, epiCsv, queryList=None, overwrite=False)

	Generate files for Phandango

Write a neighbour joining tree (.tree) from core distances
and cluster assignment (.csv)

	Args:
	
	combined_list (list)
	Name of sequences being analysed. The part of the name before the first ‘.’ will
be shown in the output

	clustering (dict or dict of dicts)
	List of cluster assignments from printClusters().
Further clusterings (e.g. 1D core only) can be included by passing these as a dict.

	nj_tree (str or None)
	String representation of a Newick-formatted NJ tree

	mst_tree (str or None)
	String representation of a Newick-formatted minimum-spanning tree

	outPrefix (str)
	Prefix for all generated output files, which will be placed in outPrefix subdirectory

	epiCsv (str)
	A CSV containing other information, to include with the CSV of clusters

	queryList (list)
	Optional list of isolates that have been added as a query for colouring in the CSV.
(default = None)

	overwrite (bool)
	Overwrite existing output if present (default = False)

	threads (int)
	Number of threads to use with rapidnj

	
PopPUNK.plot.plot_contours(model, assignments, title, out_prefix)

	Draw contours of mixture model assignments

Will draw the decision boundary for between/within in red

	Args:
	
	model (BGMMFit)
	Model we are plotting from

	assignments (numpy.array)
	n-vectors of cluster assignments for model

	title (str)
	The title to display above the plot

	out_prefix (str)
	Prefix for output plot file (.pdf will be appended)

	
PopPUNK.plot.plot_dbscan_results(X, y, n_clusters, out_prefix)

	Draw a scatter plot (png) to show the DBSCAN model fit

A scatter plot of core and accessory distances, coloured by component
membership. Black is noise

	Args:
	
	X (numpy.array)
	n x 2 array of core and accessory distances for n samples.

	Y (numpy.array)
	n x 1 array of cluster assignments for n samples.

	n_clusters (int)
	Number of clusters used (excluding noise)

	out_prefix (str)
	Prefix for output file (.png will be appended)

	
PopPUNK.plot.plot_fit(klist, raw_matching, raw_fit, corrected_matching, corrected_fit, out_prefix, title)

	Draw a scatter plot (pdf) of k-mer sizes vs match probability, and the
fit used to assign core and accessory distance

K-mer sizes on x-axis, log(pr(match)) on y - expect a straight line fit
with intercept representing accessory distance and slope core distance

	Args:
	
	klist (list)
	List of k-mer sizes

	raw_matching (list)
	Proportion of matching k-mers at each klist value

	raw_fit (numpy.array)
	Fit to klist and raw_matching from fitKmerCurve()

	corrected_matching (list)
	Corrected proportion of matching k-mers at each klist value

	corrected_fit (numpy.array)
	Fit to klist and corrected_matching from fitKmerCurve()

	out_prefix (str)
	Prefix for output plot file (.pdf will be appended)

	title (str)
	The title to display above the plot

	
PopPUNK.plot.plot_refined_results(X, Y, x_boundary, y_boundary, core_boundary, accessory_boundary, mean0, mean1, min_move, max_move, scale, threshold, indiv_boundaries, unconstrained, title, out_prefix)

	Draw a scatter plot (png) to show the refined model fit

A scatter plot of core and accessory distances, coloured by component
membership. The triangular decision boundary is also shown

	Args:
	
	X (numpy.array)
	n x 2 array of core and accessory distances for n samples.

	Y (numpy.array)
	n x 1 array of cluster assignments for n samples.

	x_boundary (float)
	Intercept of boundary with x-axis, from RefineFit

	y_boundary (float)
	Intercept of boundary with y-axis, from RefineFit

	core_boundary (float)
	Intercept of 1D (core) boundary with x-axis, from RefineFit

	accessory_boundary (float)
	Intercept of 1D (core) boundary with y-axis, from RefineFit

	mean0 (numpy.array)
	Centre of within-strain distribution

	mean1 (numpy.array)
	Centre of between-strain distribution

	min_move (float)
	Minimum s range

	max_move (float)
	Maximum s range

	scale (numpy.array)
	Scaling factor from RefineFit

	threshold (bool)
	If fit was just from a simple thresholding

	indiv_boundaries (bool)
	Whether to draw lines for core and accessory refinement

	title (str)
	The title to display above the plot

	out_prefix (str)
	Prefix for output plot file (.png will be appended)

	
PopPUNK.plot.plot_results(X, Y, means, covariances, scale, title, out_prefix)

	Draw a scatter plot (png) to show the BGMM model fit

A scatter plot of core and accessory distances, coloured by component
membership. Also shown are ellipses for each component (centre: means
axes: covariances).

This is based on the example in the sklearn documentation.

	Args:
	
	X (numpy.array)
	n x 2 array of core and accessory distances for n samples.

	Y (numpy.array)
	n x 1 array of cluster assignments for n samples.

	means (numpy.array)
	Component means from BGMMFit

	covars (numpy.array)
	Component covariances from BGMMFit

	scale (numpy.array)
	Scaling factor from BGMMFit

	out_prefix (str)
	Prefix for output plot file (.png will be appended)

	title (str)
	The title to display above the plot

	
PopPUNK.plot.plot_scatter(X, out_prefix, title, kde=True)

	Draws a 2D scatter plot (png) of the core and accessory distances

Also draws contours of kernel density estimare

	Args:
	
	X (numpy.array)
	n x 2 array of core and accessory distances for n samples.

	out_prefix (str)
	Prefix for output plot file (.png will be appended)

	title (str)
	The title to display above the plot

	kde (bool)
	Whether to draw kernel density estimate contours

(default = True)

	
PopPUNK.plot.writeClusterCsv(outfile, nodeNames, nodeLabels, clustering, output_format='microreact', epiCsv=None, queryNames=None, suffix='_Cluster')

	Print CSV file of clustering and optionally epi data

Writes CSV output of clusters which can be used as input to microreact and cytoscape.
Uses pandas to deal with CSV reading and writing nicely.

The epiCsv, if provided, should have the node labels in the first column.

	Args:
	
	outfile (str)
	File to write the CSV to.

	nodeNames (list)
	Names of sequences in clustering (includes path).

	nodeLabels (list)
	Names of sequences to write in CSV (usually has path removed).

	clustering (dict or dict of dicts)
	Dictionary of cluster assignments (keys are nodeNames). Pass a dict with depth two
to include multiple possible clusterings.

	output_format (str)
	Software for which CSV should be formatted
(microreact, phandango, grapetree and cytoscape are accepted)

	epiCsv (str)
	Optional CSV of epi data to paste in the output in addition to
the clusters (default = None).

	queryNames (list)
	Optional list of isolates that have been added as a query.

(default = None)

sparse_mst.py

sketchlib.py

Sketchlib functions for database construction

	
PopPUNK.sketchlib.addRandom(oPrefix, sequence_names, klist, strand_preserved=False, overwrite=False, threads=1)

	Add chance of random match to a HDF5 sketch DB

	Args:
	
	oPrefix (str)
	Sketch database prefix

	sequence_names (list)
	Names of sequences to include in calculation

	klist (list)
	List of k-mer sizes to sketch

	strand_preserved (bool)
	Set true to ignore rc k-mers

	overwrite (str)
	Set true to overwrite existing random match chances

	threads (int)
	Number of threads to use (default = 1)

	
PopPUNK.sketchlib.checkSketchlibLibrary()

	Gets the location of the sketchlib library

	Returns:
	
	lib (str)
	Location of sketchlib .so/.dyld

	
PopPUNK.sketchlib.checkSketchlibVersion()

	Checks that sketchlib can be run, and returns version

	Returns:
	
	version (str)
	Version string

	
PopPUNK.sketchlib.constructDatabase(assemblyList, klist, sketch_size, oPrefix, threads, overwrite, strand_preserved, min_count, use_exact, calc_random=True, codon_phased=False, use_gpu=False, deviceid=0)

	Sketch the input assemblies at the requested k-mer lengths

A multithread wrapper around runSketch(). Threads are used to either run multiple sketch
processes for each klist value.

Also calculates random match probability based on length of first genome
in assemblyList.

	Args:
	
	assemblyList (str)
	File with locations of assembly files to be sketched

	klist (list)
	List of k-mer sizes to sketch

	sketch_size (int)
	Size of sketch (-s option)

	oPrefix (str)
	Output prefix for resulting sketch files

	threads (int)
	Number of threads to use (default = 1)

	overwrite (bool)
	Whether to overwrite sketch DBs, if they already exist.
(default = False)

	strand_preserved (bool)
	Ignore reverse complement k-mers (default = False)

	min_count (int)
	Minimum count of k-mer in reads to include
(default = 0)

	use_exact (bool)
	Use exact count of k-mer appearance in reads
(default = False)

	calc_random (bool)
	Add random match chances to DB (turn off for queries)

	codon_phased (bool)
	Use codon phased seeds
(default = False)

	use_gpu (bool)
	Use GPU for read sketching
(default = False)

	deviceid (int)
	GPU device id
(default = 0)

	Returns:
	
	names (list)
	List of names included in the database (from rfile)

	
PopPUNK.sketchlib.createDatabaseDir(outPrefix, kmers)

	Creates the directory to write sketches to, removing old files if unnecessary

	Args:
	
	outPrefix (str)
	output db prefix

	kmers (list)
	k-mer sizes in db

	
PopPUNK.sketchlib.fitKmerCurve(pairwise, klist, jacobian)

	Fit the function \(pr = (1-a)(1-c)^k\)

Supply jacobian = -np.hstack((np.ones((klist.shape[0], 1)), klist.reshape(-1, 1)))

	Args:
	
	pairwise (numpy.array)
	Proportion of shared k-mers at k-mer values in klist

	klist (list)
	k-mer sizes used

	jacobian (numpy.array)
	Should be set as above (set once to try and save memory)

	Returns:
	
	transformed_params (numpy.array)
	Column with core and accessory distance

	
PopPUNK.sketchlib.getKmersFromReferenceDatabase(dbPrefix)

	Get kmers lengths from existing database

	Args:
	
	dbPrefix (str)
	Prefix for sketch DB files

	Returns:
	
	kmers (list)
	List of k-mer lengths used in database

	
PopPUNK.sketchlib.getSeqsInDb(dbname)

	Return an array with the sequences in the passed database

	Args:
	
	dbname (str)
	Sketches database filename

	Returns:
	
	seqs (list)
	List of sequence names in sketch DB

	
PopPUNK.sketchlib.getSketchSize(dbPrefix)

	Determine sketch size, and ensures consistent in whole database

sys.exit(1) is called if DBs have different sketch sizes

	Args:
	
	dbprefix (str)
	Prefix for databases

	Returns:
	
	sketchSize (int)
	sketch size (64x C++ definition)

	codonPhased (bool)
	whether the DB used codon phased seeds

	
PopPUNK.sketchlib.joinDBs(db1, db2, output, update_random=None)

	Join two sketch databases with the low-level HDF5 copy interface

	Args:
	
	db1 (str)
	Prefix for db1

	db2 (str)
	Prefix for db2

	output (str)
	Prefix for joined output

	update_random (dict)
	Whether to re-calculate the random object. May contain
control arguments strand_preserved and threads (see addRandom())

	
PopPUNK.sketchlib.queryDatabase(rNames, qNames, dbPrefix, queryPrefix, klist, self=True, number_plot_fits=0, threads=1, use_gpu=False, deviceid=0)

	Calculate core and accessory distances between query sequences and a sketched database

For a reference database, runs the query against itself to find all pairwise
core and accessory distances.

Uses the relation \(pr(a, b) = (1-a)(1-c)^k\)

To get the ref and query name for each row of the returned distances, call to the iterator
iterDistRows() with the returned refList and queryList

	Args:
	
	rNames (list)
	Names of references to query

	qNames (list)
	Names of queries

	dbPrefix (str)
	Prefix for reference sketch database created by constructDatabase()

	queryPrefix (str)
	Prefix for query sketch database created by constructDatabase()

	klist (list)
	K-mer sizes to use in the calculation

	self (bool)
	Set true if query = ref
(default = True)

	number_plot_fits (int)
	If > 0, the number of k-mer length fits to plot (saved as pdfs).
Takes random pairs of comparisons and calls plot_fit()
(default = 0)

	threads (int)
	Number of threads to use in the process
(default = 1)

	use_gpu (bool)
	Use a GPU for querying
(default = False)

	deviceid (int)
	Index of the CUDA GPU device to use
(default = 0)

	Returns:
	
	distMat (numpy.array)
	Core distances (column 0) and accessory distances (column 1) between
refList and queryList

	
PopPUNK.sketchlib.readDBParams(dbPrefix)

	Get kmers lengths and sketch sizes from existing database

Calls getKmersFromReferenceDatabase() and getSketchSize()
Uses passed values if db missing

	Args:
	
	dbPrefix (str)
	Prefix for sketch DB files

	Returns:
	
	kmers (list)
	List of k-mer lengths used in database

	sketch_sizes (list)
	List of sketch sizes used in database

	codonPhased (bool)
	whether the DB used codon phased seeds

	
PopPUNK.sketchlib.removeFromDB(db_name, out_name, removeSeqs, full_names=False)

	Remove sketches from the DB the low-level HDF5 copy interface

	Args:
	
	db_name (str)
	Prefix for hdf database

	out_name (str)
	Prefix for output (pruned) database

	removeSeqs (list)
	Names of sequences to remove from database

	full_names (bool)
	If True, db_name and out_name are the full paths to h5 files

utils.py

General utility functions for data read/writing/manipulation in PopPUNK

	
PopPUNK.utils.check_and_set_gpu(use_gpu, gpu_lib, quit_on_fail=False)

	Check GPU libraries can be loaded and set managed memory.

	Args:
	
	use_gpu (bool)
	Whether GPU packages have been requested

	gpu_lib (bool)
	Whether GPU packages are available

	Returns:
	
	use_gpu (bool)
	Whether GPU packages can be used

	
PopPUNK.utils.decisionBoundary(intercept, gradient)

	Returns the co-ordinates where the triangle the decision boundary forms
meets the x- and y-axes.

	Args:
	
	intercept (numpy.array)
	Cartesian co-ordinates of point along line (transformLine())
which intercepts the boundary

	gradient (float)
	Gradient of the line

	Returns:
	
	x (float)
	The x-axis intercept

	y (float)
	The y-axis intercept

	
PopPUNK.utils.get_match_search_depth(rlist, rank_list)

	Return a default search depth for lineage model fitting.

	Args:
	
	rlist (list)
	List of sequences in database

	rank_list (list)
	List of ranks to be used to fit lineage models

	Returns:
	
	max_search_depth (int)
	Maximum kNN used for lineage model fitting

	
PopPUNK.utils.isolateNameToLabel(names)

	Function to process isolate names to labels
appropriate for visualisation.

	Args:
	
	names (list)
	List of isolate names.

	Returns:
	
	labels (list)
	List of isolate labels.

	
PopPUNK.utils.iterDistRows(refSeqs, querySeqs, self=True)

	Gets the ref and query ID for each row of the distance matrix

Returns an iterable with ref and query ID pairs by row.

	Args:
	
	refSeqs (list)
	List of reference sequence names.

	querySeqs (list)
	List of query sequence names.

	self (bool)
	Whether a self-comparison, used when constructing a database.
Requires refSeqs == querySeqs
Default is True

	Returns:
	
	ref, query (str, str)
	Iterable of tuples with ref and query names for each distMat row.

	
PopPUNK.utils.joinClusterDicts(d1, d2)

	Join two dictionaries returned by readIsolateTypeFromCsv() with
return_dict = True. Useful for concatenating ref and query assignments

	Args:
	
	d1 (dict of dicts)
	First dictionary to concat

	d2 (dict of dicts)
	Second dictionary to concat

	Returns:
	
	d1 (dict of dicts)
	d1 with d2 appended

	
PopPUNK.utils.listDistInts(refSeqs, querySeqs, self=True)

	Gets the ref and query ID for each row of the distance matrix

Returns an iterable with ref and query ID pairs by row.

	Args:
	
	refSeqs (list)
	List of reference sequence names.

	querySeqs (list)
	List of query sequence names.

	self (bool)
	Whether a self-comparison, used when constructing a database.
Requires refSeqs == querySeqs
Default is True

	Returns:
	
	ref, query (str, str)
	Iterable of tuples with ref and query names for each distMat row.

	
PopPUNK.utils.readIsolateTypeFromCsv(clustCSV, mode='clusters', return_dict=False)

	Read cluster definitions from CSV file.

	Args:
	
	clustCSV (str)
	File name of CSV with isolate assignments

	mode (str)
	Type of file to read ‘clusters’, ‘lineages’, or ‘external’

	return_type (str)
	If True, return a dict with sample->cluster instead
of sets
[default = False]

	Returns:
	
	clusters (dict)
	Dictionary of cluster assignments (keys are cluster names, values are
sets containing samples in the cluster). Or if return_dict is set keys
are sample names, values are cluster assignments.

	
PopPUNK.utils.readPickle(pklName, enforce_self=False, distances=True)

	Loads core and accessory distances saved by storePickle()

Called during --fit-model

	Args:
	
	pklName (str)
	Prefix for saved files

	enforce_self (bool)
	Error if self == False

[default = True]

	distances (bool)
	Read the distance matrix

[default = True]

	Returns:
	
	rlist (list)
	List of reference sequence names (for iterDistRows())

	qlist (list)
	List of query sequence names (for iterDistRows())

	self (bool)
	Whether an all-vs-all self DB (for iterDistRows())

	X (numpy.array)
	n x 2 array of core and accessory distances

	
PopPUNK.utils.readRfile(rFile, oneSeq=False)

	Reads in files for sketching. Names and sequence, tab separated

	Args:
	
	rFile (str)
	File with locations of assembly files to be sketched

	oneSeq (bool)
	Return only the first sequence listed, rather than a list
(used with mash)

	Returns:
	
	names (list)
	Array of sequence names

	sequences (list of lists)
	Array of sequence files

	
PopPUNK.utils.read_rlist_from_distance_pickle(fn, allow_non_self=True)

	Return the list of reference sequences from a distance pickle.

	Args:
	
	fn (str)
	Name of distance pickle

	allow_non_self (bool)
	Whether non-self distance datasets are permissible

	Returns:
	
	rlist (list)
	List of reference sequence names

	
PopPUNK.utils.set_env(**environ)

	Temporarily set the process environment variables.
>>> with set_env(PLUGINS_DIR=u’test/plugins’):
… “PLUGINS_DIR” in os.environ
True
>>> “PLUGINS_DIR” in os.environ
False

	
PopPUNK.utils.setupDBFuncs(args)

	Wraps common database access functions from sketchlib and mash,
to try and make their API more similar

	Args:
	
	args (argparse.opts)
	Parsed command lines options

	qc_dict (dict)
	Table of parameters for QC function

	Returns:
	
	dbFuncs (dict)
	Functions with consistent arguments to use as the database API

	
PopPUNK.utils.stderr_redirected(to='/dev/null')

	import os

	with stdout_redirected(to=filename):
	print(“from Python”)
os.system(“echo non-Python applications are also supported”)

	
PopPUNK.utils.storePickle(rlist, qlist, self, X, pklName)

	Saves core and accessory distances in a .npy file, names in a .pkl

Called during --create-db

	Args:
	
	rlist (list)
	List of reference sequence names (for iterDistRows())

	qlist (list)
	List of query sequence names (for iterDistRows())

	self (bool)
	Whether an all-vs-all self DB (for iterDistRows())

	X (numpy.array)
	n x 2 array of core and accessory distances

	pklName (str)
	Prefix for output files

	
PopPUNK.utils.transformLine(s, mean0, mean1)

	Return x and y co-ordinates for traversing along a line between mean0 and mean1, parameterised by
a single scalar distance s from the start point mean0.

	Args:
	
	s (float)
	Distance along line from mean0

	mean0 (numpy.array)
	Start position of line (x0, y0)

	mean1 (numpy.array)
	End position of line (x1, y1)

	Returns:
	
	x (float)
	The Cartesian x-coordinate

	y (float)
	The Cartesian y-coordinate

	
PopPUNK.utils.update_distance_matrices(refList, distMat, queryList=None, query_ref_distMat=None, query_query_distMat=None, threads=1)

	Convert distances from long form (1 matrix with n_comparisons rows and 2 columns)
to a square form (2 NxN matrices), with merging of query distances if necessary.

	Args:
	
	refList (list)
	List of references

	distMat (numpy.array)
	Two column long form list of core and accessory distances
for pairwise comparisons between reference db sequences

	queryList (list)
	List of queries

	query_ref_distMat (numpy.array)
	Two column long form list of core and accessory distances
for pairwise comparisons between queries and reference db
sequences

	query_query_distMat (numpy.array)
	Two column long form list of core and accessory distances
for pairwise comparisons between query sequences

	threads (int)
	Number of threads to use

	Returns:
	
	seqLabels (list)
	Combined list of reference and query sequences

	coreMat (numpy.array)
	NxN array of core distances for N sequences

	accMat (numpy.array)
	NxN array of accessory distances for N sequences

visualise.py

poppunk_visualise main function

	
PopPUNK.visualise.main()

	Main function. Parses cmd line args and runs in the specified mode.

web.py

Functions used by the web API to convert a sketch to an h5 database, then generate visualisations and post results to PopPUNK-web.

	
PopPUNK.web.api(query, ref_db)

	Post cluster and tree information to microreact

	
PopPUNK.web.calc_prevalence(cluster, cluster_list, num_samples)

	Cluster prevalences for Plotly.js

	
PopPUNK.web.graphml_to_json(network_dir)

	Converts full GraphML file to JSON subgraph

	
PopPUNK.web.highlight_cluster(query, cluster)

	Colour assigned cluster in Microreact output

	
PopPUNK.web.sketch_to_hdf5(sketches_dict, output)

	Convert dict of JSON sketches to query hdf5 database

	
PopPUNK.web.summarise_clusters(output, species, species_db, qNames)

	Retreieve assigned query and all cluster prevalences.
Write list of all isolates in cluster for tree subsetting

Roadmap

This document describes our future plans for additions to PopPUNK, pp-sketchlib [https://github.com/bacpop/pp-sketchlib] and BeeBOP [https://github.com/bacpop/beebop/]
and BeeBOP. Tasks are in order of priority.

PopPUNK

	Containerise the workflow. See #193 [https://github.com/bacpop/PopPUNK/issues/193], #277 [https://github.com/bacpop/PopPUNK/issues/277], #278 [https://github.com/bacpop/PopPUNK/issues/278].

	Add full worked tutorials back to the documentation #275 [https://github.com/bacpop/PopPUNK/issues/275].

	Make the update pipeline more robust. See #273 [https://github.com/bacpop/PopPUNK/issues/273].

	
	Codebase optimsation and refactoring
	
	Modularisation of the network code #249 [https://github.com/bacpop/PopPUNK/issues/249].

	Removing old functions #103 [https://github.com/bacpop/PopPUNK/issues/103]

	
	Add more species databases:
	
	
	meningitidis #267 [https://github.com/bacpop/PopPUNK/issues/267].

	
	influenzae #276 [https://github.com/bacpop/PopPUNK/issues/276].

	Stable names for lineage/subclustering modes.

Other enhancements listed on the issue page [https://github.com/bacpop/pp-sketchlib/issues] are currently not planned.

pp-sketchlib

	
	Update installation in package managers
	
	Update for new macOS #92 [https://github.com/bacpop/ska.rust#planned-features]

	Rebuild conda recipe for CUDA12 and newer HDF5 #46 [https://github.com/conda-forge/pp-sketchlib-feedstock/pull/46]

	Allow amino-acids as input #89 [https://github.com/bacpop/pp-sketchlib/issues/89].

Other enhancements listed on the issue page [https://github.com/bacpop/pp-sketchlib/issues] are currently not planned.

BeeBOP

	Update backend database to v8 #42 [https://github.com/bacpop/beebop/pull/42].

	Update CI images.

	
	Add more info on landing page.
	
	News page.

	About page.

	Methods description.

	Add custom cluster names (e.g. GPSCs)

	Integration tests for error logging.

	
	Persist user data.
	
	Persist microreact tokens #41 [https://github.com/bacpop/beebop/pull/41].

	Allow user to change or delete tokens

	Add linage/subclusters to results page #23 [https://github.com/bacpop/beebop/pull/23].

	Report sample quality to user.

	Front-end update for large numbers of input files.

	Add serotype prediction for S. pneumoniae.

	Add multiple species databases.

Miscellaneous

Rejected/alternative logos

[image: Original logo]
[image: God save the queen]
[image: Avril]

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 PopPUNK	

 	
 	
 PopPUNK.assign	

 	
 	
 PopPUNK.bgmm	

 	
 	
 PopPUNK.dbscan	

 	
 	
 PopPUNK.mandrake	

 	
 	
 PopPUNK.models	

 	
 	
 PopPUNK.network	

 	
 	
 PopPUNK.plot	

 	
 	
 PopPUNK.refine	

 	
 	
 PopPUNK.sketchlib	

 	
 	
 PopPUNK.sparse_mst	

 	
 	
 PopPUNK.utils	

 	
 	
 PopPUNK.visualise	

 	
 	
 PopPUNK.web	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	add_self_loop() (in module PopPUNK.network)

 	addQueryToNetwork() (in module PopPUNK.network)

 	addRandom() (in module PopPUNK.sketchlib)

 	api() (in module PopPUNK.web)

 	apply_threshold() (PopPUNK.models.RefineFit method)

 	assign() (PopPUNK.models.BGMMFit method)

 	(PopPUNK.models.DBSCANFit method)

 	(PopPUNK.models.LineageFit method)

 	(PopPUNK.models.RefineFit method)

 	
 	assign_query() (in module PopPUNK.assign)

 	assign_query_hdf5() (in module PopPUNK.assign)

 	assign_samples() (in module PopPUNK.models)

B

 	
 	BGMMFit (class in PopPUNK.models)

C

 	
 	calc_prevalence() (in module PopPUNK.web)

 	check_and_set_gpu() (in module PopPUNK.utils)

 	check_search_range() (in module PopPUNK.refine)

 	checkNetworkVertexCount() (in module PopPUNK.network)

 	checkSketchlibLibrary() (in module PopPUNK.sketchlib)

 	checkSketchlibVersion() (in module PopPUNK.sketchlib)

 	cliquePrune() (in module PopPUNK.network)

 	ClusterFit (class in PopPUNK.models)

 	construct_dense_weighted_network() (in module PopPUNK.network)

 	
 	construct_network_from_assignments() (in module PopPUNK.network)

 	construct_network_from_df() (in module PopPUNK.network)

 	construct_network_from_edge_list() (in module PopPUNK.network)

 	construct_network_from_sparse_matrix() (in module PopPUNK.network)

 	constructDatabase() (in module PopPUNK.sketchlib)

 	copy() (PopPUNK.models.ClusterFit method)

 	createDatabaseDir() (in module PopPUNK.sketchlib)

 	createMicroreact() (in module PopPUNK.plot)

 	cugraph_to_graph_tool() (in module PopPUNK.network)

D

 	
 	DBSCANFit (class in PopPUNK.models)

 	decisionBoundary() (in module PopPUNK.utils)

 	distHistogram() (in module PopPUNK.plot)

 	
 	drawMST() (in module PopPUNK.plot)

 	dtype (PopPUNK.models.NumpyShared attribute)

 	(PopPUNK.refine.NumpyShared attribute)

E

 	
 	edge_weights() (PopPUNK.models.LineageFit method)

 	evaluate_dbscan_clusters() (in module PopPUNK.dbscan)

 	
 	expand_cugraph_network() (in module PopPUNK.refine)

 	extend() (PopPUNK.models.LineageFit method)

 	extractReferences() (in module PopPUNK.network)

F

 	
 	fetchNetwork() (in module PopPUNK.network)

 	findBetweenLabel() (in module PopPUNK.dbscan)

 	findWithinLabel() (in module PopPUNK.bgmm)

 	fit() (PopPUNK.models.BGMMFit method)

 	(PopPUNK.models.ClusterFit method)

 	(PopPUNK.models.DBSCANFit method)

 	(PopPUNK.models.LineageFit method)

 	(PopPUNK.models.RefineFit method)

 	
 	fit2dMultiGaussian() (in module PopPUNK.bgmm)

 	fitDbScan() (in module PopPUNK.dbscan)

 	fitKmerCurve() (in module PopPUNK.sketchlib)

G

 	
 	generate_embedding() (in module PopPUNK.mandrake)

 	generate_minimum_spanning_tree() (in module PopPUNK.network)

 	get_cugraph_triangles() (in module PopPUNK.network)

 	get_grid() (in module PopPUNK.plot)

 	get_match_search_depth() (in module PopPUNK.utils)

 	get_vertex_list() (in module PopPUNK.network)

 	
 	getCliqueRefs() (in module PopPUNK.network)

 	getKmersFromReferenceDatabase() (in module PopPUNK.sketchlib)

 	getSeqsInDb() (in module PopPUNK.sketchlib)

 	getSketchSize() (in module PopPUNK.sketchlib)

 	graphml_to_json() (in module PopPUNK.web)

 	growNetwork() (in module PopPUNK.refine)

H

 	
 	highlight_cluster() (in module PopPUNK.web)

I

 	
 	isolateNameToLabel() (in module PopPUNK.utils)

 	
 	iterDistRows() (in module PopPUNK.utils)

J

 	
 	joinClusterDicts() (in module PopPUNK.utils)

 	
 	joinDBs() (in module PopPUNK.sketchlib)

L

 	
 	likelihoodBoundary() (in module PopPUNK.refine)

 	LineageFit (class in PopPUNK.models)

 	listDistInts() (in module PopPUNK.utils)

 	load() (PopPUNK.models.BGMMFit method)

 	(PopPUNK.models.DBSCANFit method)

 	(PopPUNK.models.LineageFit method)

 	(PopPUNK.models.RefineFit method)

 	
 	load_network_file() (in module PopPUNK.network)

 	loadClusterFit() (in module PopPUNK.models)

 	log_likelihood() (in module PopPUNK.bgmm)

 	log_multivariate_normal_density() (in module PopPUNK.bgmm)

M

 	
 	main() (in module PopPUNK.assign)

 	(in module PopPUNK.visualise)

 	
 module

 	PopPUNK.assign

 	PopPUNK.bgmm

 	PopPUNK.dbscan

 	PopPUNK.mandrake

 	PopPUNK.models

 	PopPUNK.network

 	PopPUNK.plot

 	PopPUNK.refine

 	PopPUNK.sketchlib

 	PopPUNK.sparse_mst

 	PopPUNK.utils

 	PopPUNK.visualise

 	PopPUNK.web

 	
 	multi_refine() (in module PopPUNK.refine)

N

 	
 	name (PopPUNK.models.NumpyShared attribute)

 	(PopPUNK.refine.NumpyShared attribute)

 	network_to_edges() (in module PopPUNK.network)

 	networkSummary() (in module PopPUNK.network)

 	
 	newNetwork() (in module PopPUNK.refine)

 	newNetwork2D() (in module PopPUNK.refine)

 	no_scale() (PopPUNK.models.ClusterFit method)

 	NumpyShared (class in PopPUNK.models)

 	(class in PopPUNK.refine)

O

 	
 	outputsForCytoscape() (in module PopPUNK.plot)

 	outputsForGrapetree() (in module PopPUNK.plot)

 	
 	outputsForMicroreact() (in module PopPUNK.plot)

 	outputsForPhandango() (in module PopPUNK.plot)

P

 	
 	plot() (PopPUNK.models.BGMMFit method)

 	(PopPUNK.models.ClusterFit method)

 	(PopPUNK.models.DBSCANFit method)

 	(PopPUNK.models.LineageFit method)

 	(PopPUNK.models.RefineFit method)

 	plot_contours() (in module PopPUNK.plot)

 	plot_dbscan_results() (in module PopPUNK.plot)

 	plot_fit() (in module PopPUNK.plot)

 	plot_refined_results() (in module PopPUNK.plot)

 	plot_results() (in module PopPUNK.plot)

 	plot_scatter() (in module PopPUNK.plot)

 	
 PopPUNK.assign

 	module

 	
 PopPUNK.bgmm

 	module

 	
 PopPUNK.dbscan

 	module

 	
 PopPUNK.mandrake

 	module

 	
 PopPUNK.models

 	module

 	
 	
 PopPUNK.network

 	module

 	
 PopPUNK.plot

 	module

 	
 PopPUNK.refine

 	module

 	
 PopPUNK.sketchlib

 	module

 	
 PopPUNK.sparse_mst

 	module

 	
 PopPUNK.utils

 	module

 	
 PopPUNK.visualise

 	module

 	
 PopPUNK.web

 	module

 	print_network_summary() (in module PopPUNK.network)

 	printClusters() (in module PopPUNK.network)

 	printExternalClusters() (in module PopPUNK.network)

 	process_previous_network() (in module PopPUNK.network)

 	process_weights() (in module PopPUNK.network)

Q

 	
 	queryDatabase() (in module PopPUNK.sketchlib)

R

 	
 	read_rlist_from_distance_pickle() (in module PopPUNK.utils)

 	readDBParams() (in module PopPUNK.sketchlib)

 	readIsolateTypeFromCsv() (in module PopPUNK.utils)

 	readManualStart() (in module PopPUNK.refine)

 	
 	readPickle() (in module PopPUNK.utils)

 	readRfile() (in module PopPUNK.utils)

 	RefineFit (class in PopPUNK.models)

 	refineFit() (in module PopPUNK.refine)

 	removeFromDB() (in module PopPUNK.sketchlib)

S

 	
 	save() (PopPUNK.models.BGMMFit method)

 	(PopPUNK.models.DBSCANFit method)

 	(PopPUNK.models.LineageFit method)

 	(PopPUNK.models.RefineFit method)

 	save_network() (in module PopPUNK.network)

 	set_env() (in module PopPUNK.utils)

 	setupDBFuncs() (in module PopPUNK.utils)

 	
 	shape (PopPUNK.models.NumpyShared attribute)

 	(PopPUNK.refine.NumpyShared attribute)

 	sketch_to_hdf5() (in module PopPUNK.web)

 	sparse_mat_to_network() (in module PopPUNK.network)

 	stderr_redirected() (in module PopPUNK.utils)

 	storePickle() (in module PopPUNK.utils)

 	summarise_clusters() (in module PopPUNK.web)

T

 	
 	transformLine() (in module PopPUNK.utils)

 	
 	translate_network_indices() (in module PopPUNK.network)

U

 	
 	update_distance_matrices() (in module PopPUNK.utils)

V

 	
 	vertex_betweenness() (in module PopPUNK.network)

W

 	
 	writeClusterCsv() (in module PopPUNK.plot)

 	
 	writeReferences() (in module PopPUNK.network)

 _images/mst_medium_clusters.png

_images/mst_medium_stress.png

_images/microreact.png
UNK (perplexity 20)

puobor

omeres

® E
og®
© §
H

0.0030

_images/microreact_perplexity5.png
00030

Toomes | puster

_images/phandango.png

_images/pneumo_likelihood.png
SPARC_db 3-component DPGMM assignment boundary

0.8

0.6

0.4

0.29

\& |

0.0
0.0

0.2 0.4

o

.6 0.8

_images/mst_small_clusters.png

_images/mst_small_stress.png

_images/pneumo_refined.png
Refined fit boundary

2

PRI
RAGEY <

. I R I R .
R e

B3
o

.
I
B R
X et

. e

. .

B

s,

'
M

px

1.0

0.8

0.6

0.4

== Decision boundary

Search range

Initial boundary
X Within-strain mean

X Between-strain mean

0.8 1

0.6

0.4 1

0.2 1

0.0 4

0.2

0.0

_images/pneumo_unrefined.png
-component DPGMM

SPARC_db 3

1.0 1
0.8 1
0.6 1
0.4 1
0.2 1
0.0 4

1.0

0.8

0.6

0.4

0.2

0.0

_images/poppunk_logo_original.png
PopPUNK

_images/poppunk_v2.png
PobpPUNK
Pop PUNK
Po DPUNK
PopHJNK
PopPUNK

nav.xhtml

 Table of Contents

 		
 PopPUNK documentation

 		
 Installation

 		
 Installing with conda (recommended)

 		
 Installing with pip

 		
 Clone the code

 		
 Overview

 		
 Use the command line interface

 		
 Installation and version

 		
 Use query assignment mode

 		
 Fit your own model

 		
 Create visualisations

 		
 Use an online interface

 		
 Sketching (–create-db)

 		
 Overview

 		
 Using pp-sketchlib directly

 		
 Viewing information about a database

 		
 Choosing the right k-mer lengths

 		
 Choosing the sketch size

 		
 Sketching from read data

 		
 Sketching RNA viruses

 		
 GPU acceleration

 		
 Data quality control (–qc-db)

 		
 QC of input sequences

 		
 QC of pairwise distances

 		
 QC of the network (assign only)

 		
 Fitting new models (–fit-model)

 		
 Overview

 		
 Common arguments

 		
 How good is my fit?

 		
 Interpreting the network summary

 		
 bgmm

 		
 dbscan

 		
 refine

 		
 Alternative network scores

 		
 Unconstrained (two-dimensional) optimisation

 		
 Using fit refinement when mixture model totally fails

 		
 Using core/accessory only

 		
 Running with multiple boundary positions

 		
 threshold

 		
 lineage

 		
 Use an existing model with new data

 		
 Distributing PopPUNK models

 		
 Database contents

 		
 Picking references

 		
 Query assignment (poppunk_assign)

 		
 Downloading a database

 		
 Clustering your genomes

 		
 Adding external cluster labels (MLST, CC etc)

 		
 Using a model fitted with –indiv-refine

 		
 Increasing speed

 		
 Updating the database

 		
 Visualising results

 		
 Creating visualisations

 		
 Common options

 		
 Microreact

 		
 Setting the perplexity parameter for mandrake

 		
 GrapeTree

 		
 Phandango

 		
 Cytoscape

 		
 Minimum spanning trees

 		
 With small data

 		
 With medium data

 		
 With big data

 		
 Using GPU acceleration for the graph

 		
 Subclustering with PopPIPE

 		
 Overview

 		
 Installation

 		
 Usage

 		
 Alternative runs

 		
 Config file

 		
 PopPIPE configuration

 		
 IQ-TREE configuration

 		
 fastbaps configuration

 		
 Updating a run

 		
 Using GPUs

 		
 Installing GPU packages

 		
 Selecting a GPU

 		
 Using a GPU

 		
 Troubleshooting

 		
 Most/all of my samples merge when I run a query

 		
 Memory/run-time issues

 		
 Known bugs

 		
 Calculating query-query distances when unnecessary

 		
 Older HDBSCAN models fail to load

 		
 When I look at my clusters on a tree, they make no sense

 		
 I have updated PopPUNK, and my clusters still seemed scrambled

 		
 Calculating distances using 0 thread(s)

 		
 Error/warning messages

 		
 Row name mismatch

 		
 Samples are missing from the final network

 		
 Old cluster split across multiple new clusters

 		
 Scripts

 		
 Easy run mode

 		
 Iterative PopPUNK

 		
 Adding weights to the network

 		
 Writing the pairwise distances to an output file

 		
 Writing network components to an output file

 		
 Calculating Rand indices

 		
 Calculating silhouette indices

 		
 Distributing PopPUNK models

 		
 Iterative PopPUNK

 		
 Running with multiple boundary positions

 		
 Step-by-Step Tutorial

 		
 Examples

 		
 Common questions

 		
 Citing PopPUNK

 		
 Generating citations and methods

 		
 Reference documentation

 		
 assign.py

 		
 assign_query()

 		
 assign_query_hdf5()

 		
 main()

 		
 bgmm.py

 		
 findWithinLabel()

 		
 fit2dMultiGaussian()

 		
 log_likelihood()

 		
 log_multivariate_normal_density()

 		
 dbscan.py

 		
 evaluate_dbscan_clusters()

 		
 findBetweenLabel()

 		
 fitDbScan()

 		
 mandrake.py

 		
 generate_embedding()

 		
 models.py

 		
 BGMMFit

 		
 ClusterFit

 		
 DBSCANFit

 		
 LineageFit

 		
 NumpyShared

 		
 RefineFit

 		
 assign_samples()

 		
 loadClusterFit()

 		
 network.py

 		
 addQueryToNetwork()

 		
 add_self_loop()

 		
 checkNetworkVertexCount()

 		
 cliquePrune()

 		
 construct_dense_weighted_network()

 		
 construct_network_from_assignments()

 		
 construct_network_from_df()

 		
 construct_network_from_edge_list()

 		
 construct_network_from_sparse_matrix()

 		
 cugraph_to_graph_tool()

 		
 extractReferences()

 		
 fetchNetwork()

 		
 generate_minimum_spanning_tree()

 		
 getCliqueRefs()

 		
 get_cugraph_triangles()

 		
 get_vertex_list()

 		
 load_network_file()

 		
 networkSummary()

 		
 network_to_edges()

 		
 printClusters()

 		
 printExternalClusters()

 		
 print_network_summary()

 		
 process_previous_network()

 		
 process_weights()

 		
 save_network()

 		
 sparse_mat_to_network()

 		
 translate_network_indices()

 		
 vertex_betweenness()

 		
 writeReferences()

 		
 refine.py

 		
 NumpyShared

 		
 check_search_range()

 		
 expand_cugraph_network()

 		
 growNetwork()

 		
 likelihoodBoundary()

 		
 multi_refine()

 		
 newNetwork()

 		
 newNetwork2D()

 		
 readManualStart()

 		
 refineFit()

 		
 plot.py

 		
 createMicroreact()

 		
 distHistogram()

 		
 drawMST()

 		
 get_grid()

 		
 outputsForCytoscape()

 		
 outputsForGrapetree()

 		
 outputsForMicroreact()

 		
 outputsForPhandango()

 		
 plot_contours()

 		
 plot_dbscan_results()

 		
 plot_fit()

 		
 plot_refined_results()

 		
 plot_results()

 		
 plot_scatter()

 		
 writeClusterCsv()

 		
 sparse_mst.py

 		
 sketchlib.py

 		
 addRandom()

 		
 checkSketchlibLibrary()

 		
 checkSketchlibVersion()

 		
 constructDatabase()

 		
 createDatabaseDir()

 		
 fitKmerCurve()

 		
 getKmersFromReferenceDatabase()

 		
 getSeqsInDb()

 		
 getSketchSize()

 		
 joinDBs()

 		
 queryDatabase()

 		
 readDBParams()

 		
 removeFromDB()

 		
 utils.py

 		
 check_and_set_gpu()

 		
 decisionBoundary()

 		
 get_match_search_depth()

 		
 isolateNameToLabel()

 		
 iterDistRows()

 		
 joinClusterDicts()

 		
 listDistInts()

 		
 readIsolateTypeFromCsv()

 		
 readPickle()

 		
 readRfile()

 		
 read_rlist_from_distance_pickle()

 		
 set_env()

 		
 setupDBFuncs()

 		
 stderr_redirected()

 		
 storePickle()

 		
 transformLine()

 		
 update_distance_matrices()

 		
 visualise.py

 		
 main()

 		
 web.py

 		
 api()

 		
 calc_prevalence()

 		
 graphml_to_json()

 		
 highlight_cluster()

 		
 sketch_to_hdf5()

 		
 summarise_clusters()

 		
 Roadmap

 		
 PopPUNK

 		
 pp-sketchlib

 		
 BeeBOP

 		
 Miscellaneous

 		
 Rejected/alternative logos

_images/poppunk.png

_images/poppunk_flowchart.png
S. pneumoniae typing

Use PopPUNK CLI
conda install poppunk

No

A 4

poppunk_assign

Download DB, run:

Create a sketch database:
poppunk --create-db

v

Run QC on the database:
poppunk --fit-model

v

Fit a model, check clusters:
poppunk --fit-model

D

v

(optional) prepare database
for distribution:
poppunk_references
email: poppunk@poppunk.net

Try different models
gmm / dbscan / refine/
threshold / lineage

_images/bgmm_fit_K10.png
salmonella_db_K10 10-component DPGMM

1.01

0.8 1

0.6

0.4 1

0.2 1

0.0 4

<.

A
2

0.0

0.2

0.4

0.6

0.8

1.0

_images/unconstrained_refine.png
Refined fit boundary

0.51
---- Combined decision boundary
x Within-strain mean
04] * Between-strain mean
Search range
s
(0]
2 0.3
©
k%)
©
o
o 0.2
®
(0]
9]
9]
<
0.1
0.0

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
Core distance (m)

_images/bgmm_k2_fit.png
0.4

Accessory distance (a)
o o
N w

©
=

0.01

DPGMM - estimated number of spatial clusters: 2

0.00 0.01 0.02 0.03 0.04
Core distance (m)

_images/vp_ipp_result.png
A B

Outbreak-level

Pathogenic Clonal “PCG-level” phylogenomic cluster: “Outbreak-level”
Group (PCG): iterative-PopPUNK Strains with <6 SNPs Iterative-PopPUNK
strains with < 2500 SNPs clusters within one month clusters
N =23 N =23 N =274 N =280

PCG3

PCG189

Isolates clustering concordance: 90%

N =32 N =25
c ——
———
 — |

Isolates clustering concordance: 100% Isolates clustering concordance: 95%

_images/13mer_hist.png
Count

2e+04 4e+04 6e+04 8e+04 1e+05

0e+00

13—-mers in Listeria sequencing reads

100 200 300

Abundance

400

_images/poppunk_v2_tie.png

_images/assign_network.png
-
<

- .
-
[
-
-
o
.-
.
-

.
- -
. e
R
-
. e
e
[
- A

i L I]

I

[

o

L]

- -
e
- - -
- -
-

-

. e e e = e
R e
B e
B A e
RO e
- e e e e e e
. e e e e e e
. o e e e = e
. o e e e e e
[P A
- e e e e e
e e e e e e
. e e e e e e
. e e e e e
. . e e e e =
. e e e e e e
. e e e e e e
A A A A A A A

A
A
-
A
- - R —
. Y e
- e o e 8 e 8 e e
pe -
- . .
-

- e

]
]

LN AN
ENE I I

-
-

.-
S
. o e
. - s
. o e
o - e
- - e

4

3

¢

L N A A A)

[Pa———
e
-
R
- e
-
. e e
-
.
R
-

I R I B B S I S S

P
.- e o e
. o o e
PR

. . o e
e
R
- e e e
- e

- PO
R
- .
- .
>
-
R
pe

P

i

P

.

4

[

[A I I A IR 2 N I

- e
R
L
Pa—.
Ep—.
- e

¢
¢

¢
¢

[I N K B N T I)

[A A A A S A

é

IR

[N

. e e
. e e
. e e
- o e

4

¢

I

4

¢

[

[N I I D I A

.o e
- e e
R
-
P
Lo
[P
- e e
- . e
rep———
-
Lap—.
- e

[

¢
¢

LI I O I 2 B N)

[

¢
i

AN

[

+

IR AN

. e e e

- e e e

e e e e e e
. e e e e e
[
I S
R
P
- e e e e e
. e e e e e
. e e e e e e
. e e o e e e
e e e e e
R
- e e e e e e

_images/refined_microreact.png
renamed.sparc._| Q sEARCH 616 0f 616

Developed at Imperial College Londofl

_images/cytoscape.png

_images/cytoscape_component.png

_images/bgmm_k4_boundary.png
DPGllVIbVI - estimated number of spatial clusters: 4 assignment boundary

%)

0

Scaled accessory distance

Scaled core distance

_images/bgmm_k4_fit.png
0.4

Accessory distance (a)
o o
N w

o
=

0.01

DPGMM - estimated number of spatial clusters: 4

0.02
Core distance (m)

0.03

0.04

_images/cytoscape_gpsc.png
/‘l'.,l

A

N\

R/

_images/poppipe_dag.png
-
sglit_strains {1)
.

[)
sKetchlib_dists

' i 1 i
sts grdup_stragglers sKetchlib_dists
.

L

i ' i
1 ska_align |

PR

ymmd

i
+ ska_align |

pmmd

generate_nj

.............

i Z T e S i ST ey T e T S
| fastbaps |

Pepdal

i '
cluster_sumniary
' '

t

_images/dbscan_fit.png
0.4

Accessory distance (a)
o o
N w

©
=

0.01

HDBSCAN - estimated number of spatial clusters: 5

0.01

0.02
Core distance (m)

0.03

0.04

_static/poppunk_v2.png
PobpPUNK
Pop PUNK
Po DPUNK
PopHJNK
PopPUNK

_images/dbscan_fit_min_prop.png
0.4

Accessory distance (a)
o o
N w

©
=

0.01

HDBSCAN - estimated number of spatial clusters: 4

0.00 0.01 0.02 0.03 0.04
Core distance (m)

_static/minus.png

_static/plus.png

_images/ecoli_refined_fit.png
© o o o o
N w ESN (6] [e)]

Accessory distance (a)

©
=

0.01

Refined fit boundary

----- Combined decision boundary
-------------- Search range

% Within-strain mean

+ Between-strain mean

0.000

0.005

0.010 0.015 0.020 0.025 0.030 0.035
Core distance (m)

_images/ecoli_refined_fit_with_neg.png
o o o
BN (e)] 0]

Accessory distance (a)

o
(N}

0.01

Refined fit boundary

¥ -——- Combined decision boundary
Search range

% Within-strain mean

+ Between-strain mean

0.000

0.005

0.015 0.020 0.025 0.030 0.035

Core distance (m)

0.010

_images/ecoli_refine_constrained.png
0.61

o
U

o
w

o
(N}

Accessory distance (a)

o
=

0.01

Refined fit boundary

©
IS

Combined decision boundary
-------------- Search range

Initial boundary
Within-strain mean
Between-strain mean

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Core distance (m)

_images/ecoli_refine_unconstrained.png
0.61

o)) o o
N w ESN u

Accessory distance (a)

o
=

0.01

Refined fit boundary

---- Combined decision boundary
% Within-strain mean
+ Between-strain mean
Search range

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
Core distance (m)

_images/grapetree.png
Cluster_Cluster

@ 1128
Q207
@ 3116]
O4no
@56
Qe
@ 0l
Ol
@ 1213
O11BE
@71l
Qs
ol
O
@ 1512
O1812
Q172
O182
@ 1012
Q222
@212
@ 2211
@ 2s311
Q2411
@511
@ 2611
Q2711
Oa2s11
@ 2011
@301
() Others [1]

0.008

_images/grapetree_collapse.png
Cluster_Cluster

@ 1128
Q207
@ 3116]
O4no
@56
Qe
@ 0l
Ol
@ 1213
O11BE
@71l
Qs
ol
O
@ 1512
O1812
Q172
O182
@ 1012
Q222
@212
@ 2211
@ 2s311
Q2411
@511
@ 2611
Q2711
Oa2s11
@ 2011
@301
() Others [1]

0.807

_images/flu_phased.png
HDBSCAN - estimated number of spatial clusters: 10

Accessory distance (a)
o o o o o o
N w ESN (6] (e)] ~

©
=

0.01

0.00

0.01

0.02

0.03 0.04
Core distance (m)

0.05

0.06

0.07

_images/flu_unphased.png
HDBSCAN - estimated number of spatial clusters: 12

1.01

o o o
IN o fos)

Accessory distance (a)

o
(N}

0.01

0.00 0.02 0.04 0.06 0.08 010 0.12
Core distance (m)

0.14

_static/file.png

_images/ipp_tree_example.png
0.01 MACD

Cluster1: 0.4

Cluster2: 0.45

Cluster3: 0.9

8 clusters (0 node + 8 leaves)

: 0.5 MACD

I
Clu§ter1 :0.4

Cluster2: 0.45

Cluster3: 0.9

1 cluster (1 node + 0O leaf)

0.95 MACD

Cluster1: 0.4

Cluster2: 0.45

Cluster3:

—————-o————————————————

7 clusters (1 node + 6 leaves)

_images/kmer_fit.png
Example fit 4 - 12754 5#72 vs. 12673 8#24
6x 107! -

Proportion of matches

2x 101

0 10 20 30
k-mer length

_images/indiv_refine.png
0.4

o
N

Accessory distance (a)

©
=

0.0

Refined fit boundary

©
w

---- Combined decision boundary
Individual decision boundaries
.............. Search range
e Initial boundary
x Within-strain mean
+ Between-strain mean

0.00 0.01 0.02 0.03
Core distance (m)

0.04

_images/listeria_lineage_rank_1_histogram.png
175+

150+

Included nearest neighbour distances for rank 1

———

0.000

0.001

0.002

0.003
Distance

0.004 _ 0.005

0.006

_images/listeria_lineage_rank_3.png
‘ i‘ 0.0035

=ID

12673_8#24

12673_8#26

12673_8#27

12673_8#28

12673_8#29

= Rank_1_Lineage_Cluster
18
4

26

= Rank_2_Lineage_Cluster

2

= Rank_3_Lineage_Cluster

2

= Rank_5_Lineage_Cluster

1

= overall_Lineage_Cluste
18-2-2-1

4-2-2-1

26-1-1-1

1-1-1-1

4-2-2-1

_images/listeria_dists.png
Accessory distance (a)

0.40+

0.35+1

©
w
o

listeria_gmm distances

0.015 0.020 0.025 0.030 0.035 0.040
Core distance (m)

_images/listeria_lineage_rank_1.png
=ID

12673_8#24

12673_8#26

12673_8#27

12673_8#28

12673_8#29

@
®

= Rank_1_Lineage_Cluster
18
4

26

= Rank_2_Lineage_Cluster

2

©)
‘ e. 8. 0.0028

= Rank_3_Lineage_Cluster

2

= Rank_5_Lineage_Cluster

il

= overall_Lineage_Cluster
18-2-2-1

4-2-2-1

26-1-1-1

1-1-1-1

4-2-2-1

_images/listeria_threshold.png
Refined fit boundary

Threshold boundary

0.02 0.03 0.04
Core distance (m)

0.01

0.00

0.4

(e) @dueasip Alossaddy

0.1

_images/listeria_lineage_rank_3_histogram.png
300

250+

200+

Density

100+

50+

Included nearest neighbour distances for rank 3

o
o '_____I
o

0.002

0.004 0.006 0.008
Distance

_images/listeria_refined.png
0.4

o
N

Accessory distance (a)

©
=

0.0

Refined fit boundary

©
w

---- Combined decision boundary
.............. Search range

e Initial boundary

x Within-strain mean

+ Between-strain mean

0.00 0.01 0.02 0.03
Core distance (m)

0.04

